
MarekFiser-LsystemsOnline.v101.pdf

Charles University in Prague
Faculty of Mathematics and Physics

BACHELOR THESIS

Marek Fišer

L-systems online

Department of Software and Computer Science Education

Supervisor of the bachelor thesis: RNDr. Josef Pelikán
Study program: Computer Science
Specialization: Programming

Prague 2012

Version 1.01 (30/6/2012) Typesetting by XƎLATEX

I would like to express my thanks to my supervisor RNDr. Josef Pelikán for
guiding me through this Bachelor thesis, to Milan Straka for his great help with
F# stuff (especially the lexer and parser) and to my friends and colleagues who
have given me valuable advice and feedback. Last but not least, I would like to
thank my family, especially my father, for their support.

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that
the Charles University in Prague has the right to conclude a license agreement
on the use of this work as a school work pursuant to Section 60 paragraph 1 of
the Copyright Act.

In date signature of the author

Název práce: L-systémy online

Autor: Marek Fišer

E-maiolvá adresa autora: malsys@marekfiser.cz

Katedra: Kabinet software a výuky informatiky

Vedoucí bakalářské práce: RNDr. Josef Pelikán

E-maiolvá adresa vedoucího: pepca@cgg.mff.cuni.cz

Klíčová slova: Lindenmayerovy systémy, L-systémy, modelování rostlin, fraktál,
systém komponent, SVG, WebGL

Abstrakt
L-systém je v nejjednodušší podobě varianta bezkontextové gramatiky. Byl

vyvinut a používá se hlavně pro modelování růstu rostlin, ale s jeho pomocí se
také dají vytvářet obecné fraktály, modely měst nebo dokonce hudba. Pokud
někoho L-systémy zaujmou a chce s nimi experimentovat, je těžké najít aplikaci,
která by mu to umožňovala. Cílem této práce bylo vytvořit online systém pro
práci a experimentování s L-systémy pro široké spektrum uživatelů. Výsledné
řešení se skládá ze dvou částí.

První část je univerzální, snadno rozšiřitelná knihovna pro zpracování L-sys-
témů. Svou rozšiřitelnost dosahuje modularitou, vstup zpracovává prostřednic-
tvím systému propojených komponent, které jsou specializované na konkrétní
činnost. To také přispívá k přehlednosti a spolehlivosti celku. Navíc je knihovna
zcela nezávislá a multiplatformní, lze ji tedy použít i v jiných aplikacích.

Druhá část je moderní webové rozhraní, které bylo navrženo tak, aby bylo
srozumitelné pro nováčky a zároveň aby nabízelo pokročilé funkce pro náročnější
uživatele. Součástí webu je i galerie L-systémů, do které může každý uživatel
přispívat a tvořit tak komunitu. Webové rozhraní plně využívá schopnosti navr-
žené knihovny a slouží tak i jako ukázka jejího použití.

Title: L-systems online

Author: Marek Fišer

Author’s e-mail address: malsys@marekfiser.cz

Department: Department of Software and Computer Science Education

Supervisor: RNDr. Josef Pelikán

Supervisor’s e-mail address: pepca@cgg.mff.cuni.cz

Keywords: Lindenmayer systems, L-systems, plant modelling, fractal, component
system, SVG, WebGL

Abstract
An L-system in its simplest form is a variant of a context-free grammar.

Originally, L-systems were developed and are still mainly used for modeling plant
growth, though with L-systems it is possible to create general fractals, models
of towns or even music. However, anyone interested in L-systems and wanting
to experiment with them may have difficulty finding an appropriate application.
The goal of this work was to create an online system, suitable for a wide range
of users, for working and experimenting with L-systems. The resulting solution
consists of two parts.

The first part is a universal, easily-expandable library for processing L-sys-
tems. Expandability is achieved thanks to its modularity. All input is processed
through interconnected components that are specialized in particular activities.
The specialization of the components also contributes to the clarity and reliability
of the whole processing system. The library is independent and multiplatform
and can thus be readily used in other applications.

The second part consists of a modern web interface designed to be under-
standable for beginners and yet also capable of providing advanced features for
more advanced users. Part of the site is a gallery of L-systems to which each
user can contribute and which thus helps to create a user-community. The web
interface takes full advantage of the library and thus serves as an example of its
use.

Contents

Introduction 5

1 L-systems 9
1.1 Formal definition of L-system . 9

1.1.1 Rewriting principles of an L-system 9
1.1.2 Interpretation of L-system symbols 10

1.2 L-system types . 12
1.2.1 Deterministic L-systems 12
1.2.2 Bracketed L-systems . 12
1.2.3 Stochastic L-systems . 14
1.2.4 Context-sensitive L-systems 15
1.2.5 Parametric L-systems . 17

1.3 Related L-system generators . 19
1.3.1 Web based generators . 19
1.3.2 Desktop applications . 20

2 Design 23
2.1 Choice of development environment 23
2.2 L-system processing library . 24

2.2.1 Input form . 24
2.2.2 Input syntax . 25
2.2.3 Source code compilation 28
2.2.4 Input processing . 30
2.2.5 Components . 30
2.2.6 Measuring pass . 32
2.2.7 Utilities . 34

2.3 Processing system . 34
2.3.1 Basic component system 34
2.3.2 Component system extensions 35
2.3.3 Interpretation of a symbol as another L-system 36
2.3.4 Final component system 40

2.4 Web user interface . 41
2.4.1 L-system processor . 41
2.4.2 Gallery of L-systems . 42
2.4.3 Help . 42
2.4.4 Administration . 42
2.4.5 Database . 42

3 Implementation 47
3.1 Solution structure . 47
3.2 Input parsing . 48
3.3 Compilation and evaluation . 49
3.4 Components members . 51

3.4.1 Documentation of members 53
3.4.2 Example . 53

1

3.5 Input processing . 54
3.6 Immutable data structures as scoped storage 55
3.7 Implemented components . 55

3.7.1 Symbol rewriter . 55
3.7.2 Turtle graphics interpreter 58

3.8 Triangulation of 3D polygons . 59
3.9 Web user interface . 60

3.9.1 Data annotations . 62
3.9.2 Easy configurability . 63
3.9.3 Inversion of control . 64
3.9.4 Removal of literal strings with the T4MVC 65
3.9.5 Generated help pages . 66
3.9.6 Caching and compression 67
3.9.7 Error logging . 69
3.9.8 Cascading style sheets . 70
3.9.9 JavaScript . 71

4 Results 73
4.1 L-system processing library . 73

4.1.1 Unit tests . 73
4.2 Web user interface . 74

4.2.1 Visitors and traffic . 74
4.3 Some solution statistics . 76
4.4 Showcase of L-systems . 76

Conclusion 83

List of Abbreviations 87

List of Figures 87

List of Tables 90

List of Source codes 90

Appendix A Contents of attached CD 93

Appendix B About figures 95

Appendix C User documentation 103
C.1 How to process L-system . 103
C.2 Creation of the Pythagoras tree 103

Appendix D Component implementation and usage 111
D.1 Component implementation . 111

D.1.1 Static filtering . 111
D.1.2 Configurable filtering . 113
D.1.3 Logging of messages . 115
D.1.4 Usage in real process configuration 116

D.2 Component documentation . 117

2

Appendix E Usage of L-system processing library 119

Appendix F Publish on the server 123
F.1 Creation of publish package . 123

F.1.1 Settings . 123
F.1.2 Compilation . 123

F.2 Configuration of the server . 123
F.2.1 Internet Information Services (IIS) 124
F.2.2 Web platform installer . 124
F.2.3 F# . 125

F.3 Deploy of the application . 125
F.3.1 Creation of new Application pool 125
F.3.2 Creation of new App Pool 125
F.3.3 Copy files . 126

F.4 First run . 127
F.5 Server migration . 127

Appendix G Third-party libraries and services 129
G.1 F# PowerPack . 129
G.2 HTML5 boilerplate . 129
G.3 Three.js . 129
G.4 jQuery . 129
G.5 Modernizr . 129
G.6 Code Contracts . 130
G.7 Autofac IoC container . 130
G.8 MvcContrib . 130
G.9 Elmah . 131
G.10 LESS css . 131

G.10.1 .LESS . 131
G.11 Data Annotations Extensions . 131
G.12 Yahoo! UI Library . 132
G.13 ReCaptcha . 132
G.14 Google Analytics . 132

Appendix H Input syntax reference 133
H.1 Regular expressions . 133
H.2 Tokens . 133

H.2.1 Identifier . 133
H.2.2 Number . 134
H.2.3 Operator . 134

H.3 Input syntax . 134
H.3.1 Input . 134
H.3.2 Empty statement . 135
H.3.3 Constant definition . 135
H.3.4 Function definition . 135
H.3.5 L-system definition . 135
H.3.6 Process configuration definition 137
H.3.7 Process statement . 138
H.3.8 Mathematical expression 138

3

H.3.9 Common rules . 138

Appendix I Standard library source code 139
I.1 General Constants . 139
I.2 Component specific constants . 139

I.2.1 Svg renderer . 139
I.2.2 ThreeJs renderer . 139

I.3 Abstract L-systems . 139
I.3.1 Standard L-system 2D . 140
I.3.2 Standard L-system 3D . 140
I.3.3 Branches . 140
I.3.4 Polygons and branches . 141

I.4 Process configurations . 141
I.4.1 Symbol printer . 141
I.4.2 Svg renderer . 141
I.4.3 ThreeJs renderer . 142
I.4.4 Hexagonal ASCII renderer 142
I.4.5 Inner L-system process configuration 143
I.4.6 Constant dumper . 143

Appendix J Components 145
J.1 Legend . 145
J.2 Components . 145

J.2.1 2D SVG renderer . 145
J.2.2 3D renderer base . 146
J.2.3 3D Three.js renderer . 146
J.2.4 Axiom provider . 147
J.2.5 Constants dumper . 148
J.2.6 Hexagonal ASCII interpreter 148
J.2.7 Inner L-system iterator . 149
J.2.8 Inner L-system processor 150
J.2.9 Interpreter caller . 151
J.2.10 Memory-buffered iterator 151
J.2.11 Random generator provider 152
J.2.12 Symbol fileter . 153
J.2.13 Symbol provider . 154
J.2.14 Symbol rewriter . 154
J.2.15 Symbols saver . 155
J.2.16 Text renderer . 155
J.2.17 Turtle interpreter . 155

Appendix K Process configurations 159
K.1 Legend . 159

K.1.1 SvgRenderer . 159

4

Introduction
An L-system (also called a Lindenmayer system) is a mathematical formalism that
was developed by Aristid Lindenmayer in 1968 for modeling plant growth [Lin68].
An example of a plant modeled by an L-system is shown in Figure 1a. In its
simplest form an L-system is a variant of a regular or context-free grammar. By
rewriting (deriving) an initial string of symbols (also called an axiom) with some
rewrite rules from a grammar, an L-system produces a new string of symbols
which can be interpreted in many different ways. In the first L-systems used
by Lindenmayer the symbols were to be interpreted as cells of algae. Later,
different approach was adopted by Przemyslaw Prusinkiewicz who interpreted
the L-system symbols using Logo-like turtle drawing system1 [Pru85]. With this
method he obtained more plant-like structures and fractals [CD93]. In Figure 1b
you can see a H-tree fractal created by an L-system.

(a) Model of lilac panicle (b) H-tree fractal

Figure 1: Examples of models created by an L-system

Over time L-systems began to used in many diverse areas. For example
they were used to generate rivers in fractal mountains [PH93], streets in vir-
tual cities [PM01] and to describe the subdivision of curves [Pru*03]. L-systems
can be used in fields other than computer graphics: for example, in music genera-
tion [HCJ99; Man06]. They are still used in plant modeling. Plant models gener-
ated with L-systems are used in modern video games or films: for example, they
were used to generate many plants and trees for the famous film Avatar [Wor08;
Dun10]. 2

L-systems have a wide variety of interesting applications but it is not easy
to find a place to experiment with them. Esentially there are two basic types of
L-system generators: web-based and desktop applications. Web-based L-system
generators are easily accessible but they are often too primitive to offer much
more than the generation of simple fractals (see section 1.3.1). Some of them do
not even work in common web browsers.

1Logo a is computer programming language developed for use in the education of program-
ming for children. Logo controls a cybernetic turtle which does the drawing on a 2D canvas.

2Šťava et al. presented a reverse method – the automatic generation of L-systems from a 2D
model [Šťa*10].

5

Desktop applications generally offer more options than web-based ones but
most of them are also quite simple and do not offer advanced types of L-systems.
There are some complex applications that offer pretty good sets of features but
these are expensive, not easy to control, and/or they are old and no longer main-
tained (see section 1.3.2). A problem with desktop applications is also their
compatibility with a user’s operating system, its version, and the libraries in-
stalled.

The overall goal of this work is to take the best from both of the two main
approaches and an create online, feature-rich, development environment for any-
body who wants to experiment with L-systems. The development environment
will be divided into two parts: a web user interface and an L-system processing
library.

Figure 2: Menger sponge created by an
L-system

The user interface will be web a site
that offers great accessibility. Any-
one from around the world will be able
to use it from any device connected
to the Internet , such as: comput-
ers, laptops, tablets or smart phones.
The interface should be user-friendly
to new users and also offer advanced
features for experienced users. The
primary output format of the web-
based L-system processor will be 2D
images but it will also be possible to
create and display 3D outputs using
modern HTML5 WebGL3 technology
directly in the browser. In Figure 2 is a
print-screen of a Menger Sponge model
displayed by WebGL. Part of the web
site will be a gallery of L-systems.
Any registered user can add his own
L-systems to the gallery along with a
description and then others can rate it. This will help to create a community of
active users and it can also serve as a learning tool for new users.

The second part of the application will be the L-system processing library.
Although it will be designed to support the demands of a web interface, it will
be independent and should be usable in other applications. During the design of
the library, great emphasis will be placed on its ease of extensibility to make it
as universal as possible. It should be possible to extend the library by the users
themselves.

A new syntax for input will be designed to improve the user experience es-
pecially for new users. The syntax should be clean, easy to understand and to
remember.

3WebGL (Web-based Graphics Library) is a cross-platform, royalty-free web standard for
a low-level 3D graphics API based on OpenGL ES 2.0, exposed through the HTML5 Canvas
element as Document Object Model interfaces. WebGL code executes on a computer display
card’s GPU (graphics processing unit).

6

Structure of the thesis
In the first chapter a formal definition of L-systems is given and principles for
their rewriting and interpretation are explained. Then follows some descriptions
of L-system types and their properties. At the end of the first chapter is a list of
some related L-system generators.

The second chapter is devoted to the design of the solution. There is described
how L-system processing library and web user interface works.

Implementation details of the project are discussed in the third chapter. Sec-
tions in this chapters explains individual problems and their solutions. The text
accompanies actual source code snippets and diagrams for better explanation.

The fourth chapter summarizes the results. Part of this chapter is showcase
of images of generated L-systems.

All the source codes of L-systems used in this thesis are in a syntax designed
as a part of this work. A reference to this syntax can be found in attachment H.
It is possible to process all the source code on the web. More information about
the figures in this thesis together with additional information and their source
codes is given in attachment B.

7

8

1. L-systems
A brief history of L-systems has already been mentioned in the introduction.
In this chapter are L-systems described more formally. Follows explanation of
the rewriting and interpretation principles of L-systems. The main focus of this
chapter is to describe various L-system types. At the end of the chapter is a list
of related applications.

1.1 Formal definition of L-system
L-system L is formally a triplet L = (Σ, ω, R), where

• Σ is an alphabet, a non-empty set of symbols, Σ∗ is a set of all the words1

which can be created from the alphabet Σ, Σ+ is a set of all non-empty
words which can be created from the alphabet Σ,

• ω ∈ Σ+ is an axiom (also called seed), a word defining the initial state of
the L-system,

• R ⊂ Σ×Σ∗ is a finite set of rewrite rules (production rules), a rewrite rule
defines rewriting of a symbol s ∈ Σ to a word w ∈ Σ∗ is written as s → w.

For any symbol s ∈ Σ which does not appear on the left-hand side of any
rewrite rule in R, the identity rewrite rule s → s is assumed. These symbols are
called constants or terminals.

The formal definition of an L-system is similar to a deterministic context-
free grammar but there are a few differences. In such a grammar we distinguish
between terminal and non-terminal symbols, but in L-systems we do not define
them explicitly (rather we define the identity rewrite rule for terminal symbols
in L-systems). The next difference is in the initial string. In the grammar there
is only one symbol as an initial state but the L-system allows a non-empty word.
The biggest difference, however, is in the rewriting principles which are described
in the following section.

1.1.1 Rewriting principles of an L-system
Starting with the initial axiom (0th iteration), in each iteration all symbols are
rewritten with rewrite rules to form next iteration. All symbols can be rewritten
because every symbol is on the left side of some rewrite rule. There is only one
way to rewrite symbols in an iteration, thus rewriting is deterministic. The result
depends only on the axiom.

The rewriting of symbols is parallel (all symbols are rewritten simultaneously
during each iteration). This means that when some symbols are rewritten, the
resulting symbols are not rewritten again in the same iteration.

The described rewriting principles distinguish an L-system from a formal
grammar. In the grammar it is not mandatory to rewrite all possible symbols
(the derivation of start state can result in several different derivations). Thus,
L-systems are a strict subset of languages.

1A word is a sequence of symbols.

9

The L-system in Source code 1.1 produces strings as shown in Table 1.1. The
L-system starts with an axiom A and two rewrite rules A → B and B → A, B. In
the first iteration the axiom A is rewritten by the first rewrite rule to B. In the
second iteration B is rewritten with the second rewrite rule to symbols A, B. In
the third iteration the first symbol A is rewritten to B and the second symbol B
rewritten to A, B which gives string B, A, B and so on.
lsystem RewritingExample {

set symbols axiom = A;
set iterations = 6;
set interpretEveryIteration = true;

.. rewrite A to B;

.. rewrite B to A B;
}
process all with SymbolPrinter;

Source code 1.1: A simple L-system as an example of rewriting principles

Iteration String of symbols
0 A
1 B
2 A B
3 B A B
4 A B B A B
5 B A B A B B A B
6 A B B A B B A B A B B A B

Table 1.1: Result of the L-system in Source code 1.1

1.1.2 Interpretation of L-system symbols
The result of an L-system rewriting is a string of symbols. As mentioned in the
Introduction, we can interpret a string of symbols in many ways: for example, as
computer graphics or music.

The simplest and most common interpretation of L-system symbols is to in-
terpret them as 2D graphic elements like lines or polygons. This interpretation is
often called turtle graphics and it will be used to interpret most of the L-systems
in this thesis. This approach can be easily extended into 3D.

Let symbol F be interpreted as draw line forward, + as turn left and - as turn
right. Figure 1.1 shows the strings of symbols interpreted using turtle graphics.
The initial direction is to the right.

A slightly more complex string of symbols, as an example of interpretation, is
generated by the L-system in Source code 1.2, where symbol F is interpreted as
draw line forward, symbol + is interpreted as turn left by 85 degrees and symbol
- as turn right by 85 degrees (equally as turn left by −85 degrees). The result of
interpretation of the first, second and fourth iteration is in shown Figure 1.2.

10

(a) F + F −−F + F , turning
angle: 60◦

(b) F+F−F−F+F , turning
angle: 90◦

(c) F +F ++F −F −−FF −F ,
turning angle: 60◦

Figure 1.1: Examples of interpretation of simple string of symbols

lsystem InterpretationExample {
set symbols axiom = F;
set iterations = 4;

.. interpret F as DrawForward(10);

.. interpret + as TurnLeft(85);

.. interpret - as TurnLeft(-85);
rewrite F to F + F - - F + F;

}
process all with SvgRenderer;

Source code 1.2: Another symbol interpretation example

Figure 1.2: The first, second and fourth iteration of the Cesaro curve (Source
code 1.2)

Figure 1.3: Enhanced Cesaro curve from Figure 1.2 [PL91, p. 48]

11

1.2 L-system types
In this section is described different types of L-systems. Some types may require
an extension to the described formal definition of an L-system but this will be
omitted here.

The L-systems described so far are called deterministic L-systems because
their rewriting system is deterministic. Bracketed L-systems allow to save and
load a state of the interpretation; this can be used to model branches of plants
more easily. Stochastic L-systems can randomize a result model to suppress its
artificiality. Context-sensitive L-systems allow to rewrite symbols depending on
their context (the neighboring symbols around them). Symbols in parametric
L-systems can hold any number of arguments that can be used while rewriting
or interpreting symbols.

Any of the above-described types can be combined together.

1.2.1 Deterministic L-systems

Figure 1.4: Dragon curve

The basic L-system type described by
the previous formal definition is called
a D0L-system2. D means that the
rewriting is deterministic and 0 means
it is context-free. The result of a
D0L-system depends only on the ini-
tial string of symbols.

This type of L-system is often used
to generate fractal curves. With the
D0L-system in Figure 1.4 we can gen-
erate the Dragon curve that you can
see in Source code 1.3.
lsystem DragonCurve {

set iterations = 12;
set symbols axiom = L;
interpret R L as DrawForward(5);
interpret + as TurnLeft(90);
interpret - as TurnLeft(-90);
rewrite L to L + R +;
rewrite R to - L - R;

}
process all with SvgRenderer;

Source code 1.3: D0L-system for the generation of the Dragon curve (Figure 1.4)

1.2.2 Bracketed L-systems
A bracketed L-systems [PL91, p. 24] extends basic D0L-system with a branching
system. Branching is such a fundamental feature that Bracketed L-systems are
often just called L-systems.

2A D0L-system is also just called a dL-system [Žár*04].

12

A branching system brings two new commands to the symbol interpretation
system: start branch and end branch. These commands are nearly always repre-
sented as bracket symbols (from which bracketed L-systems got their name). An
open bracket ”[” as a start branch and close bracket ”]” as a close branch.

The start branch command saves the state of interpretation, which can then
be loaded by end the branch command later. In turtle graphics, the interpretation
state is the position, orientation and drawing color of the turtle. More than one
state can be saved at the same time, and the last saved state will be loaded first.
This behavior seems natural and could be compared to a pairing of brackets.

Branching extends a linear string of symbols to a tree structure. Individual
branches do not affect each other nor their root. This allows plants to be modeled
more easily and to create more complex models.

The bracketed L-system in Source code 1.4 demonstrates a use of the branch-
ing system to produce a plant-like model as can be seen in Figure 1.5. Note that
the color of segments indicates their type and age. Black segments are drawn with
the symbol F and they represent segments from the previous iteration. Green seg-
ments are drawn with the symbol A and they are new compared to the previous
iteration.
lsystem PythagorasTree {

set symbols axiom = A;
set initialAngle = 90;
set iterations = 4;
interpret A F as DrawForward(16);
interpret + as TurnLeft(45);
interpret - as TurnLeft(-45);

.. interpret [as StartBranch;

.. interpret] as EndBranch;
rewrite A to F [+ A] [- A] F A;
rewrite F to F F;

}
process all with SvgRenderer;

Source code 1.4: A bracketed L-system that which creates a plant-like model
(Figure 1.5)

Figure 1.5: The first four iterations of the bracketed L-system in Source code 1.4

13

1.2.3 Stochastic L-systems
All plant models generated by the same deterministic L-system are identical.
However, a forest made by trees which are all identical looks artificial and can
not be used in films or video games. Stochastic L-systems solve this problem
because they can produce a randomized model. Stochastic L-systems are called
0L-system where 0 means they are context-free.

Randomization of a model produced by stochastic a L-system can be done
in two places, in the rewrite rules or in the interpretation of symbols (or in
both). Randomization in interpretation can only change the properties of such
interpreted symbols as lengths of lines or turning angles, while the topology of the
model remains unchanged. This is in contrast to rewrite rule randomization that
can also change the topology of a model. Rewrite rule randomization is achieved
by defining more replacements for one rewrite rule. The rewriting system will
pick a random replacement if the rewrite rule is applied. Each replacement can
have a different probability of being picked.

In Figure 1.6, three models of a plant generated by stochastic L-systems are
shown. The first image (1.6a) was generated without any randomization. The sec-
ond image (1.6b) was generated with interpretation randomization of line lengths
and angles. For the last image (1.6c) was used the rewrite rule randomization
which changed the topology of the model (Source code 1.5).

(a) No randomization (b) Angles, lengths randomized (c) Also topology randomized

Figure 1.6: A comparison between a non-randomized and randomized plant model

14

lsystem StochasticLsystemExample {
set symbols axiom = X;
set iterations = 8;
set initialAngle = 90;
interpret F(age) as DrawForward(..1.8^age*random(0.5,1.5), age/2);
interpret + as TurnLeft(..45 + random(-20, 20));
interpret - as TurnLeft(..-45 + random(-20, 20));
interpret [as StartBranch;
interpret] as EndBranch;
rewrite F(age) to F(age + 1);

.. rewrite X

.. to F(1) [+ X] [- X] F(1) X weight 4 or

.. to F(1) [+ X] F(1) X weight 1 or

.. to F(1) [- X] F(1) X weight 1;
}
process all with SvgRenderer;

Source code 1.5: Stochastic L-system with randomized interpretation of symbols
and rewrite rule replacements

1.2.4 Context-sensitive L-systems
The rewriting of symbols in 0L-systems is context-free; the rewrite rules are
applied to the symbols regardless of their context (the symbols around them).
However, the rewriting of a symbol can also depend on its context. This is useful
in simulating the flow of signals (nutrients or hormones) in a plant model that,
for example, attempts to demonstrate natural plant growth [PL91].

Formally there are two types of context-sensitive L-systems, 1L-systems and
2L-systems. The rewrite rules of 1L-systems checks the context only to one side
(left or right), whereas the rewrite rules of 2L-systems checks the context on
both sides. Since 1L-systems are just 2L-systems with one context empty we will
consider context-sensitive L-systems as 2L-systems.

The context-sensitive L-system in Source code 1.6 shows a simulation of signal
propagation in a string of symbols; the result is given in Table 1.2.
lsystem RewritingExample {

set symbols axiom = B A A A A A;
set iterations = 6;
set interpretEveryIteration = true;

.. rewrite {B} A to B;

.. rewrite B {A} to A;
}
process all with SymbolPrinter;

Source code 1.6: Context-sensitive L-system simulating signal propagation

Context-sensitive bracketed L-systems

If we add context-sensitive rewrite rules to bracketed L-systems the situation
becomes more difficult. The context-matching procedure must take into account
the branches. The following rules define the natural behavior of context between
branches:

15

Iteration String of symbols
0 B A A A A A
1 A B A A A A
2 A A B A A A
3 A A A B A A
4 A A A A B A
5 A A A A A B
6 A A A A A A

Table 1.2: An axiom and the first 6 iterations of an L-system in Source code 1.6
showing signal propagation in the given string of symbols

1. two symbols are neighbors even if there are some branches between them,
2. the left neighbor of the first symbol in a branch is a symbol before the

branch,
3. the last symbol in a branch does not have a right neighbor,
4. unmatched symbols at the end of a branch are ignored,
5. the order of branches is insignificant.

In Table 1.3 is a few examples of how a symbol with its context will match
(or not) a given string of symbols with respect to the context-matching rules
mentioned above.

Left ctx. Symbol Right ctx. Symbol string Match Rule
X Y A B ..X [A [B]] [C] ..Y yes 1
X Y A B X [Y B] C Y no

Y X A B ..Y [X A B] C yes 2
Y X A B ..Y [[X A] B] C yes 2

X Y A [B X] Y no 3
X [Y] A B ..X [Y A B] A yes 4
X [[Y]] A B ..X [[Y A B] C] yes 4
X [Y] A B ..X [A B] ..[Y] A yes 5
X [Y] [Z] A B ..X [Z] ..[Y] A yes 5

Table 1.3: Examples of context matching in bracketed L-systems

Context in bracketed L-systems can be used for the propagation of signals
through tree structures. There are two basic types of signals: the first is the
acropetal signal which spreads from the root to branches; and the second signal
is basipetal which spreads in the opposite way i.e. from branches to root. This
can be very useful in plant modeling.

Figure 1.7 shows a simulation of acropetal (1.7a) and basipetal (1.7b) signals in
a static plant-like structure. Each figure shows the first 5 iterations and segments
with the signal marked as a bolder line. The L-system in Source code 1.7 simulates
acropetal signal propagation and its result is in Figure 1.7a (image) and Table 1.4
(symbols).

16

(a) Acropetal signal propagation (b) Basipetal signal propagation

Figure 1.7: Signal propagation simulated with context-sensitive bracketed
L-systems

lsystem AcropetalSignal extends Branches {
set symbols axiom = B [+ A] A [- A] A [+ A] A;
// ignore + and - symbols in context search

.. set symbols contextIgnore = + -;
set iterations = 3;
// interpret every iteration to see signal propagation
set interpretEveryIteration = true;
set initialAngle = 90;
interpret A as DrawForward(50, 2);
interpret B as DrawForward(50, 4);
interpret + as TurnLeft(45);
interpret - as TurnLeft(-45);

.. rewrite { B } A to B;
}
process all with SvgRenderer;

Source code 1.7: The L-system simulating acropetal signal propagation (Fig-
ure 1.7a)

Iteration String of symbols
0 B [+ A] A [- A] A [+ A] A
1 B [+ B] B [- A] A [+ A] A
2 B [+ B] B [- B] B [+ A] A
3 B [+ B] B [- B] B [+ B] B

Table 1.4: The result of the L-system simulating acropetal signal propagation in
Source code 1.7

1.2.5 Parametric L-systems
Symbols in parametric L-systems can hold any number of arguments. Argu-
ments are often floating point numbers, but they can be much more complicated
structures. Arguments can be used in interpretation definition to send values like
color or length of line to an interpretation routine. Arguments can also be used in
rewrite rules to determine whether to rewrite a symbol or not, and to determine
new arguments for rewritten symbols. In context 2L-systems it is also possible
to get arguments from symbols in context and use them in rewrite rules.

17

The L-system in Figure 1.8 shows an example of how the parameters of sym-
bols can be used in interpretation methods and in rewrite rules together with the
result.

lsystem Circles {
set symbols axiom = [X] +

[X] + [X] + [X];
set iterations = 7;
interpret F as MoveForward;
interpret K as DrawCircle;
interpret + as ..TurnLeft(90);
interpret - as ..TurnLeft(-90);
interpret [as StartBranch;
interpret] as EndBranch;
rewrite ..K(n) to K(2*n);
rewrite ..F(n) to F(2*n);
rewrite X to ..K(2) F(3)

[+ X] [- X] X;
}
process all with SvgRenderer;

Figure 1.8: Parameters usage in L-system interpretation methods and in rewrite
rules along with the result

In Figure 1.9 is more complicated model, the Pythagoras tree. Detailed in-
structions for its construction with L-systems are described in appendix C.

Figure 1.9: Pythagoras tree created with parametric L-system

18

1.3 Related L-system generators
In this section a list is given of other computer programs or web pages that allow
the processing of L-systems and eventually their interpretation them in most cases
as an image.

1.3.1 Web based generators
L-system generator by Michael Norris
http://www.michaelnorris.info/software/l-system-generator.html

A simple script which allows one to set some basic properties of an L-system:
namely, number of iterations, axiom and up to 15 rewrite rules. The result is a
list of strings of symbols from all iterations (it does not interpret symbols).

This site can be used to familiarize oneself with the rewriting principles of
L-systems but it offers no additional functionality.

Lindenmayer power by MadFlame Software
http://madflame991.blogspot.com/p/lindenmayer-power.html

An L-system generator which allows the setting of some basic properties of an
L-system and the interpretation of each symbol. Symbols can be interpreted
using turtle graphics or they can define or modify the value of a variable. All
iterations are listed as text and also drawn on screen.

The possibility to work with variables makes it a relatively powerful system,
but it is only possible to draw with a thin black line. Also, the syntax is not very
user-friendly and the user interface is hard to use (as well as the script not being
very stable). The size of the output window is only 500× 500 pixels and output
cannot be saved other than using print-screen.

L-system generator by Nolan Carroll
http://nolandc.com/sandbox/fractals/

L-system generator has a nice looking interface where it is possible to set an
L-system’s basic properties. Interpretation of symbols is fixed. the last iteration
of an L-system is drawn on the screen using animation (line by line from the
starting position to the end).

The interface is user-friendly but the only interpretation of a symbol by draw-
ing is a black line. There is no help nor examples; thus, it is hard to use for an
inexperienced user. Output is drawn on a canvas which fills the entire area of the
web browser but it cannot be saved other than using print-screen.

VRML L-system generator by Patrick Murris
http://www.alpix.com/vrml/lsys.htm

An L-system generator which can generate a 3D VRML model. Basic properties
of the L-system and interpretation can be set and output can be produced into
VRML 1.0, 2.0 or string.

The problem is that a VRML plugin is needed for displaying 3D models.

19

http://www.michaelnorris.info/software/l-system-generator.html

http://madflame991.blogspot.com/p/lindenmayer-power.html

http://nolandc.com/sandbox/fractals/

http://www.alpix.com/vrml/lsys.htm

L-system generator by John Snyders
http://hardlikesoftware.com/projects/lsystem/lsystem.html

At first sight this is a sophisticated L-system generator which can rewrite symbols
with parameters and do context-sensitive rewriting. Results can be drawn on a
page as an animation of the development and a progress bar shows its status.
The biggest drawback is that L-systems are hard-coded in JavaScript and it is
only possible to change the number of iterations.

This L-system generator contains many examples and output is rendered as
image which can be saved, but examples are the only thing that it can produce.

WWW L-system Explorer by Zdík Kudrle
http://zdeeck.borg.cz/wlse/l-system.php

Figure 1.10: Image produced by
WWW L-system Explorer

An L-system generator with a well-
arranged user interface where it is possi-
ble to set the basic properties of the gen-
erated L-systems. The interpretation of
symbols is fixed and it uses an unusual set
of interpretation methods like pen up and
pen down instead of the traditional draw
line and move forward. The last iteration
is drawn as an image by server-side PHP
script thus output can be downloaded eas-
ily. It is possible to set line color (even
to color gradient) and background color of
the image. Size of the output image can
be set freely.

This web-based generator is the best
among the generators listed in this section. It contains a well-written help section
and several examples. However it cannot do context rewriting and symbols can’t
hold any parameters. The length of drawn lines or turns can only be adjusted by
increasing depth level and setting the change ratio. An example of a plant-like
model produced by WWW L-system Explorer is shown in Figure 1.10.

1.3.2 Desktop applications
L-systems explorer by James Matthews
http://www.generation5.org/content/2002/lse.asp

A simple desktop application which renders L-systems in the application window.
Basic properties of an L-system and its interpretation can be edited in a dialog
window but interpretation of individual symbols cannot be changed. It is possible
to move and zoom the model with a mouse. L-systems can be saved or loaded
into a text file and the drawn image can be saved to the clipboard.

L-systems explorer can be used for generating of simple models but it is not
possible to do context rewriting or use symbol parameters; even line thickness
cannot be changed. The user interface for editing an L-system is very simple (it
is only possible to show rewrite rules for one symbol at a time).

20

http://hardlikesoftware.com/projects/lsystem/lsystem.html

http://zdeeck.borg.cz/wlse/l-system.php

http://www.generation5.org/content/2002/lse.asp

L-system Vector Generator by Dmitry Malutin
http://xaraxtv.at.tut.by/lsvg.htm

Figure 1.11: A plant example
from L-system Vector Generator

A similar application to L-systems explorer by
James Matthews but with a better user inter-
face and it is also possible to randomize line
lengths or turn angles. a nice feature is the an-
gle wizard which displays grid a of L-systems
each with a different setting of turning angle -
allowing the user to easily make their choice.
Drawn lines can be automatically closed to
form polygons. It is possible to save an image
as AI (Adobe Illustrator) or WMF (Windows
Metafile) which are both not very common for-
mats.

This application contains hundreds of ex-
amples but it lacks any advanced types of
L-systems or interpretation settings. Applica-
tion window size is about 700× 550 pixels and
it cannot be resized. One of the built-in exam-
ples with randomized angles and line lengths is
shown in Figure 1.11.

L-system 4 by Timothy Perz
http://www.oocities.org/tperz/L4About.htm

L-system 4 is a relatively advanced tool for generating models with L-systems.
Besides all the basic functionality it is possible to create 3D models with custom
textures. Models can be saved as raster images (BMP or JPEG) or they can be
exported to AutoCAD DXF format. Interpreting capabilities are quite good but
it can only do deterministic rewriting with a limited usage of parameters.

A table of symbol interpretations (which are not changeable) can be displayed
at right-hand side of the application: a nice feature. L-system 4 has good capa-
bilities for producing 3D output but the input syntax is very compact and hard to
read. Also, more advanced L-system types like, context-sensitive or parametric
L-systems are, not supported.

L-studio by Przemysław Prusinkiewicz et. al
http://algorithmicbotany.org/lstudio/

L-studio is probably one of the best applications designed for modeling plants with
L-systems. L-studio is not a single program but it is a suite of program modules
that consists of many tools. L-studio can process all the types of L-systems
described in section 1.2 and also produce the animation of plant growth. With
L-studio it is possible to model 3D models of plants with regard to environmental
factors such as wind, gravity, the space around a plant, sunlight, etc. The output
model can be saved in many formats such as Wavefront OBJ, Postscript, or BMP,
or it can be rendered with its built-in ray-tracer to produce photo-realistic images.

21

http://xaraxtv.at.tut.by/lsvg.htm

http://www.oocities.org/tperz/L4About.htm

http://algorithmicbotany.org/lstudio/

There are even many examples of plant models and an extensive help section,
though certainly it is not easy to start using it. The syntax is very compact and
lack clarity for a new user.

The application is not free-ware but a demo version can be downloaded. After
an evaluation period it is still possible to use it but it is not possible to export
images and previews have a watermark. In Figure 1.12 is one of the most beautiful
examples from L-studio, the Lily.

Figure 1.12: Model of Lily produced by L-studio

22

2. Design
In this chapter the design of my solution for an online feature-rich development
environment is described and the decisions that were made explained. Implemen-
tation details are described in chapter 3.

In the first section (2.2) the design of the L-system processing library is de-
scribed. The library processes input with a component-based approach. The core
of the library is responsible for creating system a of connected components (com-
ponents graph) but processing of the L-system itself is fully under the control of
the components. Components can be created by the user, thus bringing freedom
to the L-system processing.

The library contains predefined components to make it possible to process
L-systems without need the for creating custom components. The design of these
components is described in the second section (2.3). Predefined components also
serves as an example for users who want to implement their own components or
whole processing system.

In the third section (2.4) is described the design of the online web user inter-
face. It uses the library and components to process input so it also serves as an
example of the usage of the library.

2.1 Choice of development environment
As development environment was chosen the .NET framework because of follow-
ing reasons.

Multiplatformity Thanks to the Mono project1 .NET libraries and executables
can be used not only on Windows but also on Linux, Mac and many other
operating systems.

Development tools Visual Studio 2010 is powerful integrated development en-
vironment (IDE) with many integrated tools (like inteli-sense, NuGet pack-
age system or T4 templates) and useful downloadable plugins. Visual Stu-
dio has built-in support for unit testing which helps to test especially non-
runnable code like libraries easily.

Reflection Reflection is the ability to examine types and work with meta-data,
properties and functions of an object at runtime. Reflection can be used to
load various plugins or data at runtime and help extensibility in great way.

Parser generator FsLex and FsYacc are lexer and parser generators written in
F# with good support by Visual Studio. Generated lexer and parser are
also in F# thus they can be easily used in any .NET project.

Web framework ASP.NET MVC is a lightweight presentation framework for
creating web applications in .NET. ASP.NET MVC 3 is using the Razor
view engine which helps to do the web very easily.

1Mono is an open source implementation of Microsoft’s .NET Framework (http://www.
mono-project.com).

23

http://www.mono-project.com

http://www.mono-project.com

Database and object mapping MsSQL server offers to create database stored
as a file directly in the application folder. Access to the database can be
done using ADO.NET Entity Framework (EF) which can do an object-
relational mapping (ORM) of the database.

2.2 L-system processing library
The main design goal of the L-system processing library was that it should be
simple to extend. It should be possible to alter the processing of an L-system
without needing to change the whole processing system. This behavior is achieved
by its modular design – input is processed within a set of connected components.
Each component is specialized for one particular activity: for example, symbol
rewriting or the rendering of an image. Both components and connections are
definable by the user.

A component-based modular system has many advantages over a monolithic
system. Probably the biggest advantage, one already discussed, is its ease of
extensibility. It is simple to implement the extension of a component and include
it into the system. It is also possible to improve existing components and extend
system capabilities. A simple illustration of how this component system extension
works is shown in Figure 2.1. The first system (Fig. 2.1a) was extended by a
gravity simulation component being added to give the second system (Fig. 2.1b).
The possible results are shown in Figure 2.2.

Another advantage lies the in specialization of its components. Specialized
components are easier to implement and the outcome will most likely have less
bugs. Specialization also helps to make a system more robust because individual
components can be tested separately. Tests for a single component are easier
to write and they can test situations which cannot be tested for on the whole
system.

.. Rewriter. Interpreter. input. output

(a) Simple component-based system

.. Rewriter. Gravity simulation. Interpreter. input. output

(b) Extended component-based system

Figure 2.1: The extension of component-based processing system

2.2.1 Input form
Input is an important part of an application. L-systems have no standardized
input: for example, like programming languages. Every implementation of an
L-system processor uses its own variant of the input.

The main goals for input design are simplicity and universality. With simple
input there is lower threshold for a new user to start using an application. Com-
plicated input might well discourage many potential users. Universal input means

24

(a) Original tree model (no effect of gravity) (b) Tree model with simulated gravity

Figure 2.2: Possible outputs from process systems in Figure 2.1

that everything is possible to define by input, including definitions of L-systems,
configuration of components, etc.

Generally there are two basic types of input, the graphic interface and source
code. Source code was chosen to be he input because it is better for saving,
sharing and versioning. Statements can be easily commented upon, thus the
ideas behind the code can be saved with it. Parts of the code can be copy-pasted
and the syntax can be extended. Parsing of source code is quite complex but the
input interface can be just one text area.

To achieve good readability of input source code the syntax will have to be
rich in keywords. This should ensure that even new users will understand the
statements. With source code input it is still possible to create a second type of
input – the graphic interface. This can be achieved by source code designers but
this will be left to a future extension.

2.2.2 Input syntax
Everything can be described by input. By everything is meant L-system def-
initions, configuration of components, definitions of component systems, which
L-system to process with which component system etc. This is important for
easy saving and sharing.

The following list describes concrete entities which are possible to describe
with source code.

• Global constant
• Global function
• L-system definition

– Local constant
– Local function

25

– Component property assignment
– Component symbol property assignment
– Symbol interpretation – defined interpretation for one or more L-system

symbols
– Rewrite rule

• Process configuration – definition of component system
– Component
– Container – components in container a can be reassigned when an

L-system is processed by process configuration
– Connection – defines the connection between two components

• Process statement – defines processing of the L-system with process config-
uration

– Container component reassign – change of component in container
– Additional L-system statements – additional L-system statements which

can alter the processed L-system

A full reference of the input syntax is given in appendix H. A small example
of input source code together with the result is shown in Figure 2.3.

lsystem SierpinskiGasket {
set symbols axiom = + R;
set iterations = 7;

interpret L R as DrawForward(
2 ^ -currentIteration
* 700);

interpret + as TurnLeft(60);
interpret - as TurnLeft(-60);

rewrite L to R + L + R;
rewrite R to L - R - L;

}
process all with SvgRenderer;

Figure 2.3: Example of source code along with the result – Sierpinski gasket

Value types

The L-system processing library allows to use two types of values for constants
or for configuration of components. The first type is a number and it is stored
as floating point value with about 15 significant digits. The numbers can be
specified in 5 formats:

• floating-point format like 24, -8.1, 2e-10, 3141.59e3,
• binary format with prefix 0b like 0b100101 or 0b0111011,
• octal format with prefix 0o like 0o54607, 0o776,

26

• hexadecimal format with prefix 0x like 0xFFBF00, 0x13a4F,
• hexadecimal format with prefix # like #332211 (this is handy for colors).

The second type is a array. The elements in the array can be both the
constants and the arrays. The array is started and ended by a brace and the
values are separated by a comma. The syntax of the array is illustrated in Source
code 2.1.
let const = 0xAF + 1.2e1;
let array = {1, 2, {3.1, 3.2, 3.3}, const, 5, {}};

Source code 2.1: Example of array syntax.

L-system inheritance

The L-system can inherit (extend) all features from some other L-system. This
feature should minimize code repetition and allows to define base L-systems in
the standard library to simplify the work with L-systems (see appendix I.3).

The pre-existing L-system is called base or ancestor and the new L-system
is called derived L-system or child L-system. Inheritance L-system statements
follows a simple rule: the derived L-system will redefine definitions of the base L-
system. The result of Source code 2.2 is B B B B B A (the first process statement)
and X X A (the second process statement).

lsystem BaseLsystem {
set symbols axiom = A;
set iterations = 5;
rewrite A to B A;

}
lsystem DerivedLsystem extends BaseLsystem {

set iterations = 2;
rewrite A to X A;

}
process BaseLsystem with SymbolPrinter;
process DerivedLsystem with SymbolPrinter;

Source code 2.2: Example L-systems inheritance.

It is possible to inherit more than one L-system. Their statements are rede-
fined in the same order as stated in the definition. The result of Source code 2.3
is Y Y A (the first process statement) and X X A (the second process statement).

27

lsystem BaseLsystemX {
set symbols axiom = A;
set iterations = 5;
rewrite A to X A;

}
lsystem BaseLsystemY {

rewrite A to Y A;
}
lsystem DerivedLsystemXY extends BaseLsystemX, BaseLsystemY {

set iterations = 2;
}
lsystem DerivedLsystemYX extends BaseLsystemY, BaseLsystemX {

set iterations = 2;
}
process DerivedLsystemXY with SymbolPrinter;
process DerivedLsystemYX with SymbolPrinter;

Source code 2.3: Example of the array syntax.

2.2.3 Source code compilation
Source code compilation has two steps as shown in Figure 2.4. The first step is
parsing the of source code to the abstract syntax tree (henceforth called AST). The
syntax parser is generated by the FsYacc parser generator which will guarantee a
robust and extensible syntax paring (for details see section 3.2). Each node of the
AST will contain information about its position in the original source code. At
this point the AST can be used for syntax highlighting or source code formatting.

.. Lexer & parser. Compiler. source code. AST. semantic tree

Figure 2.4: Source code compilation system

The abstract syntax tree (AST) for Source code 2.4 is shown in Figure 2.5.
You can see that expressions are not parsed as a tree, they are placed in a linear
list under the Expression node. This is because operators (and their precedences)
can be defined by the user, thus parser can not parse expressions where operator
precedence is needed (like 2+3 ∗ 4). Expressions will be parsed to the expression
tree by the compiler in the next step.
let angle = 90 + 5 * random();

Source code 2.4: Constant definition statement for example of AST

The next step of source code processing is compilation of the AST into the
semantic tree (henceforth called ST). Unlike the AST the semantic tree contains
only data (no keywords or metadata about position). However the nodes of the
semantic tree have a reference to the corresponding AST nodes to make it possible
to get the metadata, for example, for reporting the locations of compilation errors.
The semantic tree in Figure 2.6 is created by compiling the AST in Figure 2.5. A
more complex semantic tree obtained from Source code 2.5 is shown in Figure 2.7.

28

..Constant definition.
ln: 1, col: 1–30

.

let

.

Identificator

.

ln: 1, col: 5–9

.

angle

.

=

.

Expression

.

ln: 1, col: 13–29

.

Number

.

ln: 1, col: 13-14

.

90

.

Operator

.

ln: 1, col: 16

.

+

.

Number

.

ln: 1, col: 18

.

5

.

Operator

.

ln: 1, col: 20

.

*

.

Function

.

ln: 1, col: 22–29

.

random

.

;

Figure 2.5: Abstract syntax tree parsed from Source code 2.4

..Constant definition.
name: angle

.

Operator

.

addition

.

Number

.

90

.

Operator

.

multiplication

.

Number

.

5

.

Function

.

random

Figure 2.6: Semantic tree created by compilation of the AST in Figure 2.5

29

let iterBase = 2;
lsystem Octahedron {

set symbols axiom = F;
set iterations = iterBase + 1;
interpret F as DrawForward(100, 2);
interpret + as TurnLeft(45);
rewrite F to F + F;

}
process all with SvgRenderer;

Source code 2.5: This source code results in the semantic tree shown in Figure 2.7

2.2.4 Input processing
Evaluation of the ST follows after compilation of the input. Process statements
that define which L-system to process with which component system are chosen
from the evaluated ST. The process manager2 creates the appropriate component
system, configure it and supply it all the data needed for processing. Then
the control over processing is handed to the component system and the results
are produced. The processing of the L-system is fully under the control of the
component system. The described procedure is shown in Figure 2.8.

.. Evaluator. Process manager.

Component system

.semantic tree. evalued ST.

defined components

.

results

Figure 2.8: Input processing scheme

All components have access to process context. Process context contains all the
properties of the processed L-system, current components graph, output provider
and some other data which can be used in processing. A component can also
provide values or functions to other components or for use in the input L-system
(for example, in the rewrite rules or interpretation methods).

2.2.5 Components
The components are configurable by the input. The settable properties allow set-
ting of values (numbers or arrays) whereas the settable symbol properties allow
setting of L-system symbols. Other components can be connected to the Con-
nection properties. Components can provide the gettable properties, the callable
functions and the interpretation methods.

2The process manager is part of the L-system processing library responsible for the processing
of the input.

30

..Input.

Constant definition

.

name: iterBase

.

Number

.

2

.

L-system

. name: Octahedron.

Component property symbols assign

.

name: axiom

.

Symbol

.

F

.

Component property assign

.

name: iterations

.

Operator

.

addition

.

Variable

.

iterBase

.

Number

.

1

.

Interpretation

.

name: DrawForward

.

Symbol

.

F

.

Parameters

.

Number

.

100

.
Number

. 2.

Interpretation

.

name: TurnLeft

.
Symbol

.

+

.

Parameters

.

Number

.

45

.

Rewrite rule

.

symbol: F

.

Symbol

.

F

.

Symbol

.

+

.

Symbol

.

F

.

Process statement

.

L-system: all

.

Process configuration

.

name: SvgRenderer

Figure 2.7: A more complex semantic tree of Source code 2.5

31

The component is .NET class. The settable and gettable properties are prop-
erties of the .NET class marked with special attributes. Callable functions and
interpretation methods are methods of the .NET class also marked with the at-
tributes. Concrete details about attribute types can be found in the section 3.4
and appendix D describes the implementation of a simple component.

2.2.6 Measuring pass
Some components may need to know some information about the processed model
even if the model has not yet been completed. For example, when some renderer
component is producing an image its dimensions may be needed before any draw-
ing can be started. Also, if we want to continuously color all lines with some
gradient we must know the total number of drawn lines.

The only way how a component could achieve this is to cache all input and
count the needed metadata, and after all the input has been supplied produce
the output. However, this approach raises the complexity of components and
it can lead to significant increases in memory demands. Caching also prevents
communication between components about the current state of the L-system.
Imagine that some renderer wants to communicate with a rewriter about concrete
rewriting options and some component in their way caches all the data. At the
moment when the renderer is ready to start to render the image, the rewriter has
already done all the rewriting.

The library uses another way to allow components to pre-count some meta-
data. It is called the measure pass. If any component needs to pre-count some
metadata, the process manager invokes processing of the whole system twice. The
first pass is the measure pass where all components can count metadata and no
output is produced. The second pass is the ordinary processing of the L-system
but the the components now have the metadata already counted. This way does
not prevent communication between components about the current state of the
L-system.

It is important to ensure that both passes will be equal. For example, prob-
lems can occur if a component is using a random generator for a randomizing of
processing. The library provides a unified approach for random numbers genera-
tion with the Random provider component. The pseudo-random generator of the
Random provider is reset after each pass to the same value. If the value of the
random seed is not provided by the user it is generated randomly but it will be
the same for both passes. The actual value of generated the seed is supplied to
the user via the message system to make it possible to reproduce the output.

Figure 2.9 demonstrates the usage of the measure pass with the continuous
coloring of line segments with a rainbow gradient for the L-system in Source
code 2.6. The axiom of the L-system is an equilateral triangle. In every iteration,
the rewrite rule rewrites every line segment to line segment with a triangle or
square a on it with the same probability of 50%. The effect of the ”triangle” part
of the rewrite rule is shown in Figures 2.9a and 2.9b, the effect of the ”square” part
is shown in Figures 2.9c and 2.9d. Figure 2.9h shows randomized combination
of the previous two rules. The first three and fifth iterations of the L-system in
Source code 2.6 are in Figures 2.9e, 2.9f, 2.9g and 2.9h respectively.

Notice that even tough the number of colored lines of the L-system is random,

32

(a) Triangles 1st (b) Triangles 2nd (c) Rectangles 1st (d) Rectangles 2nd

(e) Stochastic 1st iter. (f) Stochastic 2nd iter. (g) Stochastic 3rd iter.

(h) Correctly colored 5th iteration of stochastic L-system

Figure 2.9: Example of stochastic L-system which is correctly colored by color
gradient even if total number of colored line segments is random

33

the rainbow gradient is applied correctly (Figure 2.9h). It is because in the
measure pass the number of lines has been counted and the total sum used in the
ordinary pass to distribute the gradient correctly.
lsystem WeirdKochCurve {

set symbols axiom = F +(-120) F +(-120) F;
set iterations = 5;
set randomSeed = 2;

.. set continuousColoring = true;

interpret F as DrawForward(16);
interpret + as TurnLeft;

.. rewrite F

.. to F +(60) F +(-120) F +(60) F // triangle

.. to F +(90) F +(-90) F +(-90) F +(90) F; // square
}
process all with SvgRenderer;

Source code 2.6: Stochastic L-system with a variable number of line segments

2.2.7 Utilities
The library contains some useful functionality – especially for implementation of
components.

One large part is functions available for working with 3D. The most important
one is the utility for the triangulation of 3D objects defined by their perimeter
(the 3D version of 2D polygons). It is able to triangulate any object in space,
but the triangulation of 3D objects defined by their perimeter is ambiguous so
the triangulation strategy is configurable by the user. Part of the 3D utilities are
functions for the manipulation of points, vectors and quaternions.

The next utility serves for source code printing. It is possible to print the
abstract syntax tree as well as the semantic tree to the source code.

2.3 Processing system
As discussed in the previous chapter, the processing system of the library relies
on the components. The core of the library is responsible for just creating the
component graph. The processing of an L-system and production of results is
fully under the control of the component graph. This gives absolute freedom to
the user in implementing the process system.

However it is hard to design and implement the whole L-system processing
system from scratch. The library contains a rich set of predefined components
from which can be assembled many different component graphs. The predefined
components have a general interface which allows the user to reuse or extend
them in order to add new functionality with a minimum of effort.

2.3.1 Basic component system
The component system designed in this section is primarily used for processing
L-systems to produce 2D and 3D graphics in the web interface. However, the

34

component system is designed to be extensible to any output type.
L-systems are generally processed in two phases. The first phase is rewriting

where the axiom (the initial string of symbols) is rewritten by the rewrite rules,
and the second phase is interpreting the resulting string of symbols. This can
be done with two components, the Rewriter – which is responsible for rewriting
the L-system to a given iteration – and the Interpreter – which is responsible for
interpreting symbols and producing output (Fig. 2.10).

.. Rewriter. Interpreter. input. output

Figure 2.10: Simple L-system processing system

However the components in the system in Figure 2.10 have too many tasks to
do, and thus they will be complicated to implement and hard to extend and test.

The system in Figure 2.11 was created by a subdivision of the previous sys-
tem. The Rewriter component was split to the Rewriter and the Iterator. The
(new) Rewriter will just do the rewriting of some given symbols and the Iterator
will control the iterating of the L-system (repetitive rewriting). The Interpreter
component was split to the Interpreter and the Renderer. The (new) Interpreter
will handle the interpreting of symbols: which means keep position of the virtual
”turtle” in space, saving and loading of states, etc. The Renderer will just pro-
duce the output. If we need to create a different output type we only have to
implement the new renderer component and the rest of the system will remain
unchanged.

..Rewriter. Iterator. Interpreter. Renderer.

input

. output

Figure 2.11: Subdivided L-system processing system

2.3.2 Component system extensions
The system in Figure 2.12 can be enhanced even more. Every component that in-
terprets L-system symbols needs to translate symbols to interpretation methods.
The translation can be implemented by every component individually. However,
the translation can be done by a specialized component called the Interpreter
caller. This component can be smart enough to explore all the components in
the system, find all the interpretation methods of all components and do trans-
lation automatically. This causes an automatic ”connection” of all interpreters
to the interpreter caller.

More interpreters can be used to advantage: for example, for processing
L-systems which interact with themselves or their Environment [MP96]. One
interpreter actually creates the result model and the second interpreter simulates
the environment.

35

..Iterator.

Rewriter

. Interpreter caller. Interpreter.

Environment module

. Renderer.

input

. output

Figure 2.12: The Interpreter caller which automatically calls interpretation meth-
ods of any components

The next necessary component is called the Random provider. It provides
controlled behavior for random number generation as described in section 2.2.6.
This component provides a function which returns a random number and it can
be called by other components or by the user in the L-system definition. This
component is connected to the iterator to correctly the reset random seed at every
pass.

The axiom provider is the next extending component and it provides the axiom
to the Iterator. The axiom provider is only a ”wrapper” around a single symbol
property called the axiom. The Iterator is designed generally to take the axiom
from any component implementing ISymbolProvider interface so it is possible to
connect, for example, another rewriter as the axiom provider (Fig. 2.13).

..Iterator.Main rewriter .

Input rewriter

. Interpreter caller.

Interpreter

.

Renderer

.

input

.

output

Figure 2.13: Input for the iterator can be supplied by another component

2.3.3 Interpretation of a symbol as another L-system
In some situations it can be handy to interpret a symbol as another L-system.
The component system of the library is very versatile and it allows the creation
of a specialized component which will be responsible for just this feature.

The component is called the Inner L-system processor. It is connected to the
Interpreter caller and when the caller needs to interpret a symbol as an L-system
it will call the Inner L-system processor to take care of this. A component graph
with the Inner L-system processor component is shown in Figure 2.14.

The Inner L-system processor works internally in a similar way to that of
the Process manager (see section 2.2.4). For every processed symbol it builds a
new components graph for processing the inner L-system. The components graph

36

can be specified by a special process configuration which needs to be defined in
the input3. The interpreter caller in the inner component graph is automatically
connected to all interpreters in the original component graph (see section 2.3.2),
therefore the inner L-system is interpreted by the same interpreter as the main
L-system. The inner interpreter caller is also connected to the Inner L-system
processor: thus it is possible to interpret a symbol as another L-system even in
the inner L-system.

The creation of the inner component graph is a relatively complex opera-
tion. The created and used component graphs are cached and reused later which
improves the performance.

..Iterator.Rewriter . Interpreter caller.

Interpreter

.

Renderer

.

Inner L-system processor

.

Inner iterator

.

Inner rewriter

.

Inner caller

..

Inner component graph

.

input

.

output

Figure 2.14: Component system for interpretation of a symbol as another
L-system

The interpretation of symbol as another L-system is demonstrated in Fig-
ure 2.15. The Pythagoras tree is made of Menger sponges: number of iterations
of each Menger sponge depends on its size. The smallest Menger sponge (zero
iteration) has an extra blossom as a demonstration of an interpretation symbol
as an L-system in the inner L-system. The iteration of the Blossom L-system
determines the number of leaves and it is randomly selected from 4 to 6.

3 The only implementation of the Inner L-system processor the LsystemInLsystemProcessor
component uses the process configuration called InnerLsystemConfig for creating the inner
component graph. This process configuration must be defined (see the definition in the Standard
library I.4.5).

37

(a) 4th iteration (b) 5th iteration (c) 6th iteration

(d) 11th iteration of the Pythagoras tree (e) 3rd iteration of the Menger sponge

(f) The Pythagoras tree made of the Menger sponges with blossoms at the smallest
cubes

Figure 2.15: Example of interpreting s symbol as another L-system

38

lsystem HybridPythagorasTree(angle = 50) extends Branches {
let angleComp = 90 - angle; // angle complement
let sinAngle = sin(deg2rad(angle));
let sinAngleComp = sin(deg2rad(angleComp));
set iterations = 8;
set symbols axiom = F(64, 0);
// interpret E(x) as DrawForward(x, x); // cube

.. interpret E(x) as lsystem MengerSponge(x); // Menger sponge
interpret m as MoveForward;
interpret + as Yaw(angle);
interpret - as Yaw(-angleComp);
rewrite F(x)

with left = x * sinAngle, right = x * sinAngleComp
to E(x) [+ m(left / 2) F(right)] - m(right / 2) F(left);

}

lsystem MengerSponge(size = 1) extends StdLsystem3D {
let iters = if(size > 50, 2, if(size > 10, 1, 0));
let cubeSize = size * (1/3)^iters;
let renderBlooms = iters == 0;
// add iteration to render blooms
let iters = iters + if(renderBlooms, 1, 0);
set iterations = iters;
set symbols axiom = F;
interpret F as DrawForward(cubeSize, cubeSize, #EEEEEE);
interpret f as MoveForward(cubeSize / 2);

.. interpret B as lsystem Bloom(cubeSize); // renderes bloom
rewrite F where renderBlooms to F [^ f B];
rewrite F to - f f + & f f ^ F F F +f+f- F F +f+f- F F +f+f- F

-f+f+f^f F F &f&f^ F F &f&f^ F ^ ^ f f f & + f F F &f&f^ F
^ ^ f f f & + f F F &f&f^ F ^ ^ f f f & + f F f & f f ^ +
+ f f - f f f f f;

rewrite f to f f f;
}

lsystem Bloom(size = 1) extends Polygons {
let color = #d649ff;
let leafCount = floor(random(4, 7));
let angle = 150 / leafCount;
set iterations = leafCount;
set symbols axiom = F [G(size/8) K] leaf;
interpret F as DrawForward(size * 0.5, size * 0.2, color);
interpret G as MoveForward(size * 0.5);
interpret K as DrawSphere(size / 6, #FFFF00);
interpret + as Yaw(angle);
interpret - as Yaw(-angle);
interpret / as Roll;
interpret ^ as Pitch(-15);
rewrite leaf to /(360 / leafCount) [^(90) <(color) .

+ ^ G . - ^ G . - ^ G . + +(180) + G . - ^ G . >] leaf;
}

process HybridPythagorasTree with ThreeJsRenderer;

Source code 2.7: Source code of L-system (Fig. 2.15f) demonstrating use of an
interpreting symbol as another L-system

39

2.3.4 Final component system
The final component system uses all the described functionality. The component
graph is shown in Figure 2.16. Two main process configurations defined in the
standard library use this scheme, namely the SvgRenderer and the ThreeJsRen-
derer (see appendix I.4).

..Iterator.

Axiom provider

.

Random generator provider

.Rewriter . Interpreter caller.

Interpreter

.

Renderer

.

Inner L-system processor

.

output

Figure 2.16: Final component system

40

2.4 Web user interface
The user interface is a very important part of the whole project. Two basic forms
of the user interface were considered: desktop application and web site. The web
was chosen because for the following reasons.

Accessibility The Web is accessible on a wide range of operating systems where
desktop applications cannot be ported easily. Besides the usual desktop
systems it is possible to browse it on mobile devices such as smart phones
or tablets.

No installation The end-user does not have ti install anything: the application
does not depend on the user’s OS. The solution is not easy to setup because
it has many dependencies to third-party libraries. The Web application is
installed by experienced an administrator and everything is then set up
properly.

Community Users can share and discuss their work at the same place where
they create it. This helps to create a community which is important to all
projects.

Up to date The web user interface is always up to date. All updates are in-
stantly applied and available to all users. Errors can be logged and the
administrator can fix them as soon as possible.

Figure 2.17: Logo of the web

The web user interface also serves as a com-
prehensive example of the L-system processing
library and its use and capabilities. The Sun-
flower model in Figure 2.17 was produced by
the web site and because of its shape, which
fits into a rectangle and its good recognizabil-
ity even as a 32×32 pixels image, it was chosen
as the logo of the web page.

The web page has four main parts. The
first three parts, namely the L-system proces-
sor, Gallery of L-systems and Help are acces-
sible to everyone. The fourth part is the Ad-
ministration and it is accessible only to admin-
istrators.

2.4.1 L-system processor
The main functionality of the web is the processing of a user’s input (source code)
and showing the results. For this purpose there is a web page with a big text
area where the source code can be written. There are three possibilities how to
submit the source code.

The first is processing the source code and showing all the results (or list of
errors). If there are too many outputs they are packed into one ZIP file. All the
results can be downloaded.

The second possibility is to just compile the source code and see the compiled
source code (no results are shown). This is intended for the debugging of errors
in the input.

41

The last possibility, which is only available for registered users, is to save the
source code. To be able to save the source code successfully it must be without
compilation errors. For each saved source code a unique identifier is generated
and with it is possible to access the saved input (by a permanent link). Saved
inputs can be published in gallery.

2.4.2 Gallery of L-systems
The gallery will serve as a showcase of the capabilities of L-systems for new users
as well as learning material. All entries in the gallery will have their source code
included and anybody can try to process and customize it. Registered users can
rate other gallery entries.

Every registered user may contribute to the gallery with their own creation. To
enter an L-system into the gallery a user has to save and publish the source code
via the L-system processor. It is possible to alter the thumbnail L-system over
the original L-system. This allows the simplification of images into thumbnails
and show complex models in the detail view.

Tags can be assigned to each L-system in the gallery. A tag is a short keyword,
term or abbreviation which helps to describe the L-system and allows it to be
found again. A list of all tags can be listed and a list of L-systems filtered by a
specific tag can be shown. A tag can contain a short description of its meaning.
The description can be edited only by a special user group.

L-systems can also be filtered by user name.

2.4.3 Help
An important part of the web is the help section. Help contains a few basic topics
and FAQs (frequently asked questions) for new users. Then there is list of pre-
defined components, process configurations, constants, functions and operators.
The last part of the help is a detailed syntax reference.

2.4.4 Administration
The administration section of the web is accessible to a restricted group of users.
There is more than one administrators group, every one with different privileges.

The main administrators group is able to manage roles for all users, manage
user groups (roles) and explore error logs.

The next group is able to explore all processed inputs on the site, see all saved
inputs and export the input database to a text file.

The last group can see a list of the submitted feedbacks and if a new feedback
is submitted all users from this group will receive it via e-mail.

2.4.5 Database
The database will serve for saving all necessary data. Figures 2.18 and 2.19 shows
the database scheme (PK after name means primary key and FK foreign key).

In the left part of the scheme shown in Figure 2.18 are the tables User and
Roles with the relation n to n (any user can be in any number of roles). Both

42

..

User

.

UserId [Int32] (PK)
Name [String]
NameLowercase [String]
PasswordHash [Binary]
PasswordSalt [Binary]
Email [String]
RegistrationDate [DateTime]
LastLoginDate [DateTime]
LastActivityDate [DateTime]
LastPwdChangeDate [DateTime]

.

Feedback

.

FeedbackId [Int32] (PK)
UserId [String] (FK)
Subject [String]
SubmitDate [DateTime]
Email [String]
Message [String]
IsNew [Bool]

.

Role

.

RoleId [Int32] (PK)
Name [String] (FK)
NameLowercase [String]

.

Saved input vote

.

SavedInputId [Int32] (PK)
UserId [Int32] (PK)
Rating [Int32]

.

*

.

UserId

.

0..1

.

*

.

*

.

*

.

UserId

.

1

.

SavedInputId

.

1

.

Saved inputs

.

1

.
CreationUserId

.

*

.

Saved inputs

.

0..1

.

UserId

.

0..1

.

Input process

Figure 2.18: First half of the database scheme of the web

43

..

Saved inputs

.

SavedInputId [Int32] (PK)
UrlId [String]
ParentInputProcessId [Int32] (FK)
CreationUserId [Int32] (FK)
CreationDate [DateTime]
EditDate [DateTime]
IsPublished [Bool]
IsDeleted [Bool]
PublishName [String]
Views [Int32]
SourceSize [Int32]
OutputSize [Int64]
Duration [Int64]
MimeType [String]
SourceCode [String]
ThumbnailSourceExtension [String]
Description [String]
OutputMetadata [Binary]
OutputThnMetadata [Binary]
RatingSum [Int32]
RatingCount [Int32]

.

Tag

.
TagId [Int32] (PK)
Name [String]
NameLowercase [String]
Description [String]

.

Input process

.

InputProcessId [Int32] (PK)
ParentInputProcessId [Int32] (FK)
ChainLength [Int32]
CanonicInputId [Int32] (FK)
UserId [Int32] (FK)
ProcessDate [DateTime]
Duration [Int64]

.

Process output

.

ProcessOutputId [Int32] (PK)
InputProcessId [Int32] (FK)
FileName [String]
CreationDate [DateTime]
LastOpenDate [DateTime]
Metadata [Binary]

.

Canonic input

.

CanonicInputId [Int32] (PK)
Hash [Int32]
SourceCode [String]
SourceSize [DateTime]
OutputSize [DateTime]

.
*

.
*

.

*

.

ParentInputProcessId

.

0..1

.

*

.

InputProcessId

.

0..1

.

*

.

CanonicInputId

.

1

.

0..1

.

ParentInputProcessId

.

*

.

1

.

SavedInputId

.

*

.

Saved input vote

.

1

.

CreationUserId

.

*

.

User

.

0..1

.

UserId

.

0..1

.

User

Figure 2.19: Second half of the database scheme of the web

44

tables table contains column called NameLowercase for canonical representation
of the user names for easier searching. The Feedback table for saving posted
feedbacks have a foreign key to Users (if a registered user submits a feedback).

The right part of the scheme shown in Figure 2.19 is more complicated. Every
processed input is saved to the Input process table. To optimize the size of the
database the source code is not saved for every input process but it is canonical-
ized and saved to the Canonic input table. The hash is counted for every saved
canonical input to speed up lookup for identical inputs. This system ensures that
two identical source codes will not be saved in the database. One might thing
that the probability of processing two identical source codes is very low but it is
not true. The most users trying to process the L-systems from the gallery and
do minor changes to them like changing the number of iterations.

The results of processing (like images) are not saved directly into the database
because may be relatively large. The result are saved to the hard disk to the
working directory (which can be configured). Each produced file is saved into
the Process output table to ensure effective cleaning of the physical files in the
working directory.

LastOpenDate entry (in the Process output table) is updated every time the
user views processed file. If the number of stored files exceeds the maximum
(which can be configured) the files with the longest time before last opening are
deleted. This mechanism allows to keep alive ”old but viewed” files with no need
for saving them permanently (for example for sharing with a friend).

Moreover, the new files are saved with the LastOpenDate lowered by one
minute over the CreationDate. This will cause that deletion of non-viewed files is
likely than the viewed ones. It can protect wiping all files by some bot that will
process many inputs but do not open them.

Lets go back to the saving of all processed inputs to the Input process ta-
ble. The creation of an L-system is iterative process. At the beginning is simple
L-system which is gradually improved by the user. To keep track over this itera-
tive process the ”parent” input processes is saved for each processed input (if any
exists).

The processes forms chains. The longer the chain of processes is, the better
L-system can be expected. The length of the chain can be counted by searching
the database an resolving the ParentInputProcessId column. However this process
can take very long time because the Input process table will likely have many rows.
To be possible to easily find the longest chain the chain length is counted for each
row (column ChainLength).

If new input is about to save to the Input process table and it do not have the
parent (for example the first process after opening the page), the Canonic input
table is searched for corresponding input. If the canonical input it is found, the
oldest4 corresponding input process is selected as the parent.

Saved inputs

Registered users can save their inputs. Inputs are saved to the Saved inputs table
which also serves as table for the gallery. For every saved input is generated

4More input process entries can share one canonical input entry.

45

unique ID stored in the UrlId column. The ID is used in the permanent link
which allows permanent access to all saved inputs.

The saved inputs can be edited by the owner but, more importantly, they can
be published to the gallery. The inputs in the gallery can be rated. Ratings are
stored in the Saved input vote table. The primary key to this table is a pair of
the SavedInputId and UserId allowing each user to vote for every input just once
(of course the the vote can be changed later).

The published entries in the Saved inputs table are sorted by average rating
taking into account total number of the votes (the more votes, the better). To
speed up the sorting and eliminate joining with the Saved input vote table, the
sum and the count of votes is stored directly in the Saved inputs table.

The source code of saved inputs is saved as is (without any canonicalization) to
preserve the comments and formatting. The last output of processed L-system is
saved as the result (image or thumbnail) which allows to generate the thumbnails
effectively by adding the thumbnail source extension (the ThumbnailSourceEx-
tension column) to the end of the actual source code (the SourceCode column).
In the thumbnail source extension can be used the process statement to generate
thumbnail easily.

46

3. Implementation
In this chapter are described implementation details of the project. Sections in
this chapters explains individual problems and their solutions. The text accom-
panies actual source code snippets and diagrams for better explanation.

Initially, the project was named as Malsys which stands for Mark’s L-systems
and this name preserved till now.

3.1 Solution structure
The solution is divided into 6 projects: the L-system processing library (Malsys),
the web user interface (Malsys.Web), the abstract syntax tree (Malsys.Ast), the
syntax parser (Malsys.Parsing), the common functionality (Malsys.Common) and
the project with tests (Malsys.Tests).

The main reason why the solution do not contain lower amount of projects
is because the syntax parser is written in the F# which is language from .NET
family as well as C# but it is not possible to compile the F# and C# into single
DLL. The abstract syntax tree (AST) is separated from the parser because the
AST will be compiled by the compilers written in the C# and it is desirable to
have the AST data structures written in the C#. It is also more comfortable to
design the AST classes in the C# because the F# is functional language and the
syntax of classes definition is quite complex. The common functionality is sepa-
rated into single project because it will be needed in all projects and the solution
can not have circular dependencies of projects. The Web project is separated
from main project intentionally to allow usage of the L-system processing library
independently. And finally the test project is separated to be possible to test all
projects independently. The dependencies of projects in solution are shown in
the Figure 3.1. The Malsys.Tests project has dependencies to all other projects.

..Malsys.Common.

Malsys

.

Malsys.Ast

.

Malsys.Parsing

.

Malsys.Web

.

Malsys.Tests

.
C#

.
F#

Figure 3.1: The dependencies of projects in the solution

47

3.2 Input parsing
Input parsing is in the Malsys.parsing project and it have two phases: lexing and
parsing. The lexing phase uses the lexer to convert the input source code to a
stream of tokens (basic blocks of input). The lexer is generated by the FsLex
tool [G.1]. Rules for the FsLex are written using regular expressions and the F#
code. Source code 3.1 shows an example of the lexer definition of the FsLex tool.
Full definition is in the file Lexer.fsl in the Malsys.parsing project.
let whitespace = [' ' '\t']
let digit = '\Nd' // unicode group for digits
// uppercase, lowercase, titlecase, modifier, other, number (letter)
let letter = '\Lu' | '\Ll' | '\Lt' | '\Lm' | '\Lo' | '\Nl'
// punctuation (connector), nonspacing, spacing, other (format)
let specialChar = '\Pc' | '\Mn' | '\Mc' | '\Cf'
let idFirstChar = letter | '_'
let idChar = letter | specialChar | digit | ['\'']
let id = idFirstChar idChar*

rule tokenize args = parse
| whitespace { tokenize args lexbuf } // ignore whitespaces
| id { match keywords.TryFind(lexeme lexbuf) with

| Some(token) −> token // keyword
| None −> ID(lexeme lexbuf) } // identifier

| digit+ { parseInt args lexbuf ConstantFormat.Float }
...

Source code 3.1: Example of the definition file for the FsLex tool

The next phase is called parsing. The parser is generated by the FsYacc tool
[G.1] from a definition file (Parser.fsy in the Malsys.parsing project). The parser
is written to parse the input to the abstract syntax tree (defined in Malsys.ast).
All data structures in the AST are immutable1 which helps to make the project
more robust. It is impossible to change a value of some AST node by mistake but
immutable data structures will not allow this. Source code 3.1 shows an example
of the parser definition.

Both, the FsLex and the FsYacc tools are run automatically on the build of
the project in the Visual studio.
// constant definition
ConstDef:

| LET Id EQUALS Expression SEMI
{ new ConstantDefinition($2, $4, getPos parseState) }

// function definition
FunDef:

| FUN Id OptParamsParens FunBody
{ new FunctionDefinition($2, $3, $4, getPos parseState) }

FunBody:
| LBRACE FunStatementsList RBRACE

{ new ImmutableListPos<IFunctionStatement>(
$2, getPos parseState) }

FunStatementsList:
|

{ new ResizeArray<IFunctionStatement>() }
| FunStatementsList FunStatement { $1.Add($2); $1 }

1Immutable data structures can not be changed after its creation.

48

FunStatement:
| ConstDef

{ $1 :> IFunctionStatement }
| RETURN Expression SEMI

{ $2 :> IFunctionStatement }
// identifier
Id:

| ID
{ new Identifier($1, getPos parseState) }

Source code 3.2: Example of definition file for FsYacc

3.3 Compilation and evaluation
The compilation of the abstract syntax tree is done by a set of compilers defined
in the Compilers namespace in the Malsys project. There are defined specialized
compilers for each part of the AST. The compilers uses each other to compile the
AST. For example, the Input compiler uses the L-system compiler which uses the
Constant definition compiler, etc. Figure 3.2 shows hierarchy of the compilers.
To keep the figure clear, arrows to the Expression compiler was shortened (every
compiler uses the Expression compiler).

..Input comp..

Function def. comp.

.

Lsystem comp.

.

Constant def. comp.

.Process stat. comp. .

Parameters comp.

.

Rewrite rule comp.

.

Symbols comp.

.

Expression comp.

Figure 3.2: Hierarchy of the compilers

The compilers are not bound to each other statically. All compilers imple-
ments some general interface and they requires other compilers through that
interfaces (Source code 3.3). Each compiler takes all dependent compilers as
parameters of the constructor.

49

// general interface for simplifying definition of compilers interfaces
public interface ICompiler<TSource, TResult> {

TResult Compile(TSource obj, IMessageLogger logger);
}

// constant definition compiler compiles Ast.ConstantDefinition to ConstantDefinition
public interface IConstantDefinitionCompiler

: ICompiler<Ast.ConstantDefinition, ConstantDefinition> {}

// concrete implementation of constant definition compiler interface
public class ConstantDefCompiler : IConstantDefinitionCompiler {

// constructor
public ConstantDefCompiler(..IExpressionCompiler expressionCompiler) { ... }
// compile method
public ConstantDefinition Compile(Ast.ConstantDefinition constDefAst,

IMessageLogger logger) { ... }
}

Source code 3.3: General interface for the compilers, interface for the constant
definition compiler and its implementation

An inversion of control (IoC) container is used to instantiate all compilers
[G.7]. All types of compilers are registered to the IoC container. Then it is
possible to resolve instances of compilers and all theirs dependencies are resolved
by the IoC container. This approach also brings great simplicity and extensibility
to the solution. Source code 3.4 shows the implementation of the compilers
container and its possible usage.

public class CompilersContainer : ICompilersContainer {
protected IContainer container; // the IoC container

public CompilersContainer() {
var builder = new ContainerBuilder();
builder...RegisterType<InputCompiler>().As<IInputCompiler>().SingleInstance();
... // registration of all other compilers
container = builder.Build();

}

public T Resolve<T>() {
return container.Resolve<T>();

}
}

// possible usage
var inputContainer = new CompilersContainer()...Resolve<IInputCompiler>();

Source code 3.4: General interface for compilers and interface for the expression
compiler

The result of compilation is a semantic tree (ST). The semantic tree is as well
as the AST immutable.

All compilation errors are logged with the IMessageLogger class. No excep-
tions are thrown which helps the performance and error recovery (compiling can
continue even after non fatal errors).

Evaluation

Evaluation of the semantic tree is implemented in the same way as the compila-
tion. There is set of evaluators and an IoC container that links them together.

50

3.4 Components members
A component is the .NET class. All components must implement the IComponent
interface (Source code 3.5) and they must have a parameter-less constructor.

public interface IComponent {
IMessageLogger Logger { set; }
void Initialize(ProcessContext context);
void Cleanup();

}

Source code 3.5: Interface of the ProcessManager class

According to section 2.2.5, any component can have: settable properties, set-
table symbol properties, gettable properties, connection properties, callable func-
tions and interpretation methods. All listed members are marked with special
attributes to be possible to distinguish from other class properties and methods.
The access name of all members is the same as their real name, however, the
AccessName attribute can be used to change it.

Component lifetime

The IComponent have two basic methods: the Initialize and the Cleanup. Follow-
ing list shows the order of individual operations during creation of the component
graph.

• instantiation (using required parameter-less constructor),
• set of Logger property
• for each processed L-system:

– reset (cleanup) with the Cleanup method, it should be used for setting
the component to a default state

– connecting of other components (setting the connection properties)
– setting of the settable (symbol) properties
– initialization with the Initialize method
– processing of the L-system

• cleanup with Cleanup method.

Settable properties

The settable properties (and the settable symbol properties) are actual proper-
ties of the component class marked with the UserSettable (UserSettableSybols)
attribute. The properties must have a public setter (a getter is not required).
The settable properties must have their type assignable to the IValue which covers
both base types, the numbers (Constant type) and the arrays (ValuesArray type).
The settable symbol properties must have ImmutableList<Symbol<IValue>>
type.

By default, all settable (symbol) properties are ”optional” which means that
their value may not be set. By setting the IsMandatory property of the UserSet-
table (UserSettableSybols) attribute to true, the property is marked as mandatory
and an error will be thrown if no value is set to it.

51

The setter of the settable (symbol) properties can throw the InvalidUserVal-
ueException if the supplied value is invalid. The text of the exception will be
shown as an error to the user.

Gettable properties

Similarly as the settable properties, the gettable properties are actual properties
of the component class marked with the UserGettable attribute. The properties
must have a public getter (a setter is not required) and their type must assignable
to the IValue type.

By default, values of the gettable properties can be get after the initialization
of the component. In that time all the statements from processed L-system are
already evaluated, thus the value of the gettable properties can not be used in
them. However, it is possible to set the IsGettableBeforeInitialiation property
of the UserGettable attribute to allow getting oft the property value before the
initialization and to use the value in the L-system statements.

Connection properties

The connection properties are for connecting other components. They are actual
properties of the component class marked with the UserConnectable attribute.
Properties must have a public setter (a getter is not required) and their type
must be assignable to the IComponent type.

Connection of some component to the connection properties is, by default,
mandatory but it is possible to set the IsOptional property of the UserConnectable
attribute to allow leaving the property unconnected (null). By default, only one
component can be assigned (connected) to each connection property but this can
be changed by the AllowMultiple property of the UserConnectable attribute.

The setter of connection property can throw the InvalidConnectedComponen-
tException if supplied value of a component is invalid. The text of the exception
will be shown as an error to the user.

Callable functions

Callable functions serves to allow calling of component methods in L-system
code (in statements, rewrite rules etc.). Callable functions are method of the
component class marked with the UserCallableFunction attribute. The underly-
ing method must have two parameters parameter of types IValue[] and IExpres-
sionEvaluatorContext. The return type of the method must be assignable to the
IValue type.

Similarly as gettable properties callable functions can be by default called
after the initialization of the component but it is possible to set the IsCallableBe-
foreInitialiation property of the UserCallableFunction attribute to allow calling
the function before the initialization.

Interpretation methods

The interpretation methods are specialized methods used for interpretation of
L-system symbols. The interpretation methods must be marked with the Sym-

52

bolInterpretation attribute, they must have a parameter of type ArgsStorage and
void return type.

3.4.1 Documentation of members
To simplify the documentation of a component and their members the standard
XmlDoc with custom elements is is used for documentation. The documentation
is loaded automatically if the XML file with the documentation is included with
the DLL where the component is located.

Standard summary tag is used to document the component. The user readable
name for the component can be written in the name tag and for the name of
group to which the component belongs is the tag called group. Example of the
documentation of a component is in Source code 3.6.

/// <summary>
/// Provides symbol property called Axiom which serve as
/// initial string of symbols of L−system.
/// </summary>
/// <name>Axiom provider</name>
/// <group>Common</group>
public class AxiomProvider : SymbolProvider {

...
}

Source code 3.6: Example of usage the XmlDoc for documentation of a component

Settable (symbol) properties

Basic documentation is of a settable property is loaded from the summary tag.
Expected value description can be put into the expected tag and for the default
value of a settable property is the default tag.

For settable symbol properties is loaded only the summary tag

Gettable and connection properties

Documentation for gettable and connection properties is loaded from standard
summary tag.

Callable functions and interpretation methods

In addition to standard summary tag for general documentation, callable func-
tions (and interpretation methods) can be documented with the parameters tag
where on each line should be documentation for each parameter.

3.4.2 Example
The example of implementation and the documentation of a component is in
appendix D.

53

3.5 Input processing
Component graph creation is the core of the L-system processing library. The
class responsible for that is called the ProcessManager (Source code 3.7).

It uses the class ProcessConfigurationBuilder for creation and configuration
of the component graph. For resolving component types the ProcessManager
uses the IComponentMetadataResolver. It works in the similar way as the IoC
container but the components do not have any dependencies. The components
are registered by the user directly using the IComponentMetadataResolver imple-
mentation or with the helper class called MalsysLoader.

public class ProcessManager {

public ProcessManager(ICompilersContainer compIoc,
IEvaluatorsContainer evalIoc, ..IComponentMetadataResolver compResolver) {

public InputBlockEvaled CompileAndEvaluateInput(string sourceCode,
string sourcName, IMessageLogger logger) { ... }

public void ..ProcessInput(InputBlockEvaled inBlock, IOutputProvider outProvider,
IMessageLogger logger, TimeSpan timeout) { ... }

}

Source code 3.7: Interface of the ProcessManager class

The ProcessManager does following steps in the method ProcessInput. Notice
the similarities with the compoennt lifetime (section 3.4).

For each process statement in the input do:

1. instantiate all components in the Process configuration (specified by the
process statement),

2. save the gettable properties and the callable functions from all components
which can be get and called before the initialization,

3. for each L-system (specified by the process statement) do:
(a) reset (clean) all components,
(b) connect all components to the graph (resetting may disconnect them),
(c) evaluate the L-system,the gettable properties and the callable func-

tions from step 2 can be used to evaluate the L-system statements,
(d) evaluate additional L-system statements from the process statement,
(e) set the settable properties of all components (from evaluated L-system

statements),
(f) save rest of the gettable properties and the callable functions from all

components,
(g) initialize all components,
(h) find the starter component and start it,

4. reset (clean) all components.

54

3.6 Immutable data structures as scoped stor-
age

In many places in the L-system processing library there is need for temporary ad-
dition of constants to a collection. As an example can be evaluation of a function.
The parameters of the function are added as constants to the a collection but this
addition can overlay already defined constants. After the evaluation, the collec-
tion should be in the same state as before (parameters and local variables must
not remain). This problem can be solved by complex mutable data structures
or by defensive copying of the collection which can lead to serious performance
issues (there can be hundreds of defined constants).

Immutable data structures offers clean solution to this problem. An immutable
data structure is data structure which can not be changed (muted) such as the
string in the C#. They can not be changed, thus there is no need for creation of
defensive copies. If a method passes an immutable collection of defined constants
to the function evaluation method the collection can not be changed by it.

But how is possible to add new items to immutable data structures if they
can not be changed? It is not possible because they are immutable but it is
possible to create a new copy with added item. Interestingly enough, addition to
an immutable tree has the same asymptotic complexity as insertion to a mutable
one.

Each node of the immutable tree is immutable. If we want to add new node
we will find the place in the tree where it should be. Now we need to connect it
to the parent but the parent is immutable so we will create new parent (copying
value from old one) but with new connections. Old children (if any) can be
connected without re-creating them. So we need to re-create only nodes on the
path to the root so complexity is logarithmic (log2(n) new nodes). Insertion to
the immutable tree is illustrated in Figure 3.3.

There is no need for implementation of immutable tree because the F# con-
tains it as the FSharpMap<TKey, TValue> class and the MapModule class pro-
vides methods for the work with it.

Described system ensures that global variables will be accessible and can be
temporarily overlayed by more local definitions. It is used in may places such
as evaluation of the L-systems (local constants and functions overlays global
ones), evaluation of user-defined functions (parameters and local variables) and
the rewrite rules (parameters of symbols are mapped as local variables).

3.7 Implemented components
There are many implemented components in the L-system processing library. In
this section is described implementation details of some of them.

3.7.1 Symbol rewriter
The core of the L-system processing is the rewriting of L-system symbols. The
SymbolRewriter component is responsible just for that. Its implementation sup-
ports all L-system types described in section 1.2.

55

..50.

24

.

10

.

9

.

21

.

31

.

88

.

56

.

52

.

95

.

99

(a) Original tree

..50.

24

.

10

.

9

.

21

.

31

.

88

.

56

.

52

.

71

.

95

.

99

(b) Tree with inserted node 71

Figure 3.3: Example of the add operation to the immutable tree, red nodes are
newly created

The most complicated of the SymbolRewriter component is the context check-
ing (in context rewrite rules, see section 1.2.4). The context checking can not be
implemented by naive approach which will search the context of symbol one by
one because branches must be skipped and they can be very long. Source code 3.8
demonstrates an L-system where the naive implementation will not be able to
work well. It uses symbol S to generate random color index as its parameter.
Symbol S is ”linked” using the context to every symbol X which is rewritten to
new branches with color index from the base symbol S. This causes that all lines
in one iteration have the same color but colors between iterations differs. First
five iterations with the random seed set to 0 are shown in Figure 3.4.
lsystem LongContext extends Branches {

set symbols axiom = S(0) X;
set symbols ..contextIgnore = + - F;
set iterations = 5;
set initialAngle = 90;
interpret F(c) as DrawForward(32, 2, c * #001100);
interpret + as TurnLeft(20);
interpret - as TurnLeft(-20);
rewrite ..{S(c)} X to [+ F(c) X] - F(c) X;
rewrite S to S(floor(random(0,16)));

}
process all with SvgRenderer;

Source code 3.8: L-system

Figure 3.4: Result of L-system in Source code 3.8

In the following list are strings of symbols of the first five iterations of the
L-system in Source code 3.8. Ignored symbols - and F are omitted. Every symbol

56

X needs to search for the very first symbol to match the context correctly. Now
you can see why the naive implementation can not be used.

1. S(0) X
2. S(11) [X] X
3. S(13) [[X] X] [X] X
4. S(12) [[[X] X] [X] X] [[X] X] [X] X
5. S(8) [[[[X] X] [X] X] [[X] X] [X] X] [[[X] X] [X] X] [[X]

X] [X] X

The SymbolRewriter component builds a tree from the symbols which allows to
skip the branches quickly. The nodes of the tree at the same level are interlinked
to allow search for the left and the right context effectively. The pointer to the
current symbol is updated after each processed symbol. The tree is dynamically
loaded as the right context needs more symbols. The tree node is represented by
the ContextListNode<T> class. The ContextListBuilder class helps to build the
tree correctly symbol by symbol.

The search tries all possible ways to match the context but number of possible
ways is relatively low. Figure 3.5 shows an example of the context search in the
tree built from the fourth iteration of the L-system in Source code 3.8. The red
path shows search for the left context S of the symbol X and the green path shows
the search for the right context [X] of the symbol X. The search methods are
located in the ContextChecker class.

..root.

S(12)

.

[]

.

[]

.

[]

.

X

.

X

.

[]

.

X

.

X

.

[]

.

[]

.

X

.

X

.

[]

.

X

.

X

.

Figure 3.5: The context search tree built from the fourth iteration of the L-system
in Source code 3.8

As a context matching method finds matching symbol it also maps its param-
eters as new constants. Because the context matching is done by the back-track
and the mapped symbols can be invalid, immutable data structures are used for
saving the mapped constants. Because of immutable data structures the roll-back
to old values can be done with no cost (see section 3.6). Described algorithm is
not optimal but it is sufficient for the most cases. Production L-system have
rarely context longer than one.

57

The context checking is tested by many unit tests in the Malsys.Tests project
which ensures correctness of implemented algorithm.

3.7.2 Turtle graphics interpreter
A turtle graphics interpreter is universal interpreter for both 2D and 3D render-
ers and it is implemented by the class TurtleInterpreter. It interprets L-system
symbols as a turtle graphics in 3D but if 2D renderer is connected it omits the
Z coordinate. This allows to use 3D commands even if 2D rendered is connected
which brings many advantages. For example, the Roll (a rotation by the direction
axis) by 180◦ can be used for the inversion of turning directions in 2D.

The interpreter allows to use three basic rotations: pitch, yaw and roll. The
pitch operation turns ”up” around right-hand vector, the yaw turns ”left” around
up vector axis and the roll operation rolls clock-wise around forward vector axis.
The up, right and forward vectors can be set by the user using the settable
properties. This allows some changes to the coordinate system for example, the
forward and right vectors may not right-angled.

The rotation of the turtle is represented as the Quaternion. This has many
advantages over ”traditional” representation with a rotation matrix. Quaternions
represent a rotation around some axis which is exactly what the basic operations
do. In the contrast to representation by the rotation matrix, the quaternion allows
to do pitch, yaw and roll by axes which are relative to current orientation easily.
Also the storage size of the rotation represented by the quaternion is the smallest
possible since the quaternion is represented as four numbers. Composition of two
quaternion rotations is equal to multiplying the quaternions. Source code 3.9
shows a code snippet of the Yaw interpretation method of the TurtleInterpreter.

[SymbolInterpretation(1)]
public void Yaw(ArgsStorage args) {

double angle = getArgumentAsDouble(args, 0);
currState.Rotation *= new Quaternion(upVect, angle);

}

Source code 3.9: Implementation of the Yaw method of the TurtleInterpreter

The TurtleInterpreter can simulate the tropism2. This is easily done by
quaternions too because the tropism is simulated as a physical force which is
applied to the line as you can see in Source code 3.10 [PL91, p. 58].

private void rotateByTropism(Vector3D moveVector) {
Vector3D axis = Vector3D.CrossProduct(moveVector, tropismVect);
double angle = axis.Length * tropismCoef;
if (angle.EpsilonCompareTo(0) == 0) {

return;
}
axis.Normalize();
currState.Rotation = new Quaternion(axis, angle) * currState.Rotation;

}

Source code 3.10: Implementation of the tropism which is applied after each line

2A tropism is a biological phenomenon, indicating growth or turning movement of a biological
organism, usually a plant, in response to an environmental stimulus (http://en.wikipedia.
org/wiki/Tropism).

58

http://en.wikipedia.org/wiki/Tropism

http://en.wikipedia.org/wiki/Tropism

3.8 Triangulation of 3D polygons
Turtle graphics interpretation of the L-systems can generate polygons which are
objects in the space that are defined the points on its. These objects are regular
polygons in 2D nad they are is easy to render even if its shape is complex (crossing
edges, etc.). But in 3D the situation is much more complex. Lets call the object
specified by points on its perimeter 3D polygon even if it is not 100% technically
correct. The 3D polygon is specified by the points on its perimeter but they does
not say anything about the shape in the middle.

The easiest way how to render general shapes in 3D is to compose them
from triangles. The conversion process from 3D polygon to triangles is called
triangulation. There is more possible triangulations even of basic 3D polygons
(see the situation for four points is in Figure 3.6).

Figure 3.6: Ambiguous triangulation of four points

Because of the ambiguity in the triangulation there can not exist an ideal
triangulation algorithm. With this in the mind was written the trianguler in the
L-system processing library. It is possible to configure triangulation strategies.

The triangulation algorithm works on the cutting-ear base. From each point
of the 3D polygon can be created a triangle (called ear) by connecting the point
to its two neighbors. Then one ear is picked (by strategy which is given by the
user) and cut off which means that the triangle is sent to the output. Remains
a polygon with one less point and the cutting is repeated until only 3 points
remains.

The only thing which can be affect by user is the order of the cutting but
it is quite enough. This algorithm is implemented in the Polygon3DTrianguler
class and the triangulation method takes as an argument (besides actual points)
triangulation parameters which specifies: a) the evaluation delegate which is used
for evaluation of ears, a) the ordering of ears’ scores (ascending or descending)
which specifies whether minimal or maximal score is the best, a) the recount mode
which can be set to never, neighbors or all; it specifies what ears are reevaluated
after the cutting, and a) attached multiplier, after the cutting the evaluation
score of neighboring ears are multiplied with it.

The algorithm also have support for detection of planar polygons because the
turtle graphic tends to produce planar polygons in 3D space. It tries to find a
plane where the polygon is planar by finding some plane and counting the co-
efficient of variation of distance from the plane to all points (the ratio of the
standard deviation σ to the mean µ). If the coefficient is under the threshold
(given by the user) the polygon is projected on found plane and standard Delau-
nay triangulation algorithm is used for robust triangulation.

59

The triangulation algorithm is very versatile but to simplify its usage there is
defined 5 strategies.

As in input – cuts ear one by one from the first to the last point without any
sorting

Minimal angle – triangles with minimal angles are triangulated first
Maximal angle – triangles with maximal angles are triangulated first
Maximal distance – triangles with maximal distance from all points are trian-

gulated first
Maximal distance from non-triangulated – triangles with maximal distance

from non-triangulated points are triangulated first

The user can pick one of the strategies that gives the best results to their poly-
gon type. The choice can be done by setting the polygonTriangulationStrategy
property of the ThreeJsSceneRenderer3D component. The standard library con-
tains constants which can be used instead of ”magic” numbers to keep the code
readable (appendix I.2.2). Figure 3.7 shows complex 3D polygon triangulated
with three different strategies.

(a) Maximal angle (b) Minimal angle (c) Maximal distance from
non-triangulated

Figure 3.7: Complex 3D polygon triangulated with three different strategies

3.9 Web user interface
As an web framework is used the ASP.NET MVC 3. It works on the model-view-
controller (MVC) design pattern.

Controller translates user input into operations on the model and view,
Model represents the application logic and data structures,
View generates output to the users (Figure 3.8).

60

..Controller.

Model

.

View

Figure 3.8: MVC design pattern

The model in our case is the L-system processing library and the database
access layer. Views are written in the Razor view engine which allows to mix
the HTML and C# code, thus to generate pages effectively. The controllers are
classes and theirs methods represent the actions. The routing engine of the MVC 3
automatically translates HTTP requests to the actions by given rules. Example of
routes definition is in Source code 3.11. The first rule called Permalink translates
the URLs in the format of ”permalink/id” to the call of the Index method of the
Permalink controller (class). The second rule is called default. It is used in the
most cases to translate URLs like ”http://malsys.cz/Gallery/Detail/7qe7iF9P”
to the call of the Detail method of the Gallery controller with the id parameter
set to 7qe7iF9P (Source code 3.12). The view is called at the end of the action
method (Source code 3.13).

routes.MapRoute("Permalink",
"permalink/{id}",
new { controller = "Permalink", action = "Index" }

);

routes.MapRoute("Default",
"{controller}/{action}/{id}",
new { controller = "Home", action = "Index", id = UrlParameter.Optional }

);

Source code 3.11: Example of routes definition

public class GalleryController : Controller {
...
public ActionResult Detail(string id) {

var model = malsysInputRepository.InputDb.SavedInputs
.Where(input => input.UrlId == id && !input.IsDeleted)
.SingleOrDefault();

...
.. return View(model);

}
...

}

Source code 3.12: The Detail method of the Gallery controller

61

@model InputDetail

<div class="right">permalink: @Html.InputPermaLink(Model.Input.UrlId)</div>
<h2>@Model.Input.PublishName</h2>
...
@if (Model.Input.Tags.Count > 0) {

<h3>Tags</h3>
foreach (var tag in Model.Input.Tags) {

@Html.Tag(tag.Name)
}

}
...

Source code 3.13: Gallery detail view demonstrating the Razor syntax

3.9.1 Data annotations
Data annotations are used for automatic generation and validation of HTML
forms on both, client and server sides. For advanced data annotations are used
the Data Annotations Extensions [G.11]. Source code 3.14 shows a model class
for new user with the data annotations as attributes, highlighted code in Source
code 3.15 will render the form shown in Figure 3.9.

public class NewUserModel {
[Required]
[Display(Name = "User name")]
[StringLength(64, MinimumLength=4)]
public string UserName { get; set; }

[Required]
[Email]
[Display(Name = "E−mail address")]
public string Email { get; set; }

[Required]
[StringLength(100, ErrorMessage = "The {0} must be at least {2} characters long.",

MinimumLength = 8)]
[DataType(DataType.Password)]
[Display(Name = "Password")]
public string Password { get; set; }

[DataType(DataType.Password)]
[Display(Name = "Confirm password")]
[Compare("Password",

ErrorMessage = "The password and confirmation password do not match.")]
public string ConfirmPassword { get; set; }

}

Source code 3.14: Model class with data annotations

@using (Html.BeginForm()) {
<fieldset>

<legend>Account Information</legend>
.. @Html.EditorForModel()

@ReCaptcha.GetHtml(theme: "clean")
<p><input type="submit" value="Register" /></p>

</fieldset>
}

Source code 3.15: Part of user registration view

62

Figure 3.9: Rendered registration form with incorrectly entered e-mail address
and too short password

3.9.2 Easy configurability
All the important settings are configurable in the Web.config file. The file is well
commented to allow simple changing of the settings.

Note that the Web.config file have release transformation which is changing
values for deploy.

Process times

It is easy to create an L-system which takes an eternity to process it thus, it is
important to limit the processing time, especially for non-registered users. There
are more settings for different user roles. Unregistered users have by default only
2 seconds. Registered users have 5 seconds and users in the Trusted users rule
10 seconds. Process time for gallery entries is separated because gallery image
can be generated by any request (even by non-registered user). Example of the
process times settings are shown in Source code 3.16.

<appSettings>
<add key="ProcessTime_Unregistered" value="2" />
<add key="ProcessTime_Registered" value="5" />
<add key="ProcessTime_Trusted" value="10" />
<add key="ProcessTime_Gallery" value="8" />

</appSettings>

Source code 3.16: Process time settings in the Web.config

Working directories

The outputs of processed L-systems are saved as files. The web application needs
some working directories for saving them. A working directory for the L-system
processing is separated from the gallery’s. These directories can be cleared by the
administrator at any time because files in the processing working directory are
temporary and files in the working directory for the gallery are re-created when
they are needed. This also allows easy migrating of the web site.

The maximum number of files in the processing work directory can be also set.
Source code 3.17 shows the settings of the working directories and their limits.

63

<appSettings>
<add key="WorkDir" value="~/WorkDir" />
<add key="GalleryWorkDir" value="~/GalleryWorkDir" />
<add key="Process_AutoPackTreshold" value="8" />
<add key="WorkDir_MaxFilesCount" value="4096" />
<add key="WorkDir_CleanAmount" value="32" />

</appSettings>

Source code 3.17: The working directories settings in the Web.config file

Additional setting

In Web.config file can be set additional setting such as public and private keys for
the ReCaptcha [G.13] or the directory for saving error logs (Source code 3.18).

<appSettings>
<add key="ReCaptcha_PublicKey" value="xxx−enterYourPublicKeyHere−xxx" />
<add key="ReCaptcha_PrivateKey" value="xxx−enterYourProvateKeyHere−xxx" />

</appSettings>
<elmah>

<errorLog logPath="~/ErrorLogs" ... />
...

</elmah>

Source code 3.18: Additional setting in the Web.config file

3.9.3 Inversion of control
The controllers are dependent on so called dependencies, i.e. the models and
other instantiated classes. Every controller can instantiate all dependencies on
its own but this approach statically binds the dependencies to the controllers
and it is not possible to share the instances of the dependent classes between the
controllers. For example, the model for database access should be instantiated
only once per an HTTP request and it should be shared between all entities who
wants the DB access.

The ASP.NET MVC 3 framework has built-in support for the inversion for
control (IoC) container which can resolve the dependencies for the controllers.
The big advantage of this approach is that the IoC container can control the
lifetime of individual dependent classes. Some can be shared as a single instance
between all controllers and some can be shared only within one HTTP request.

Concrete implementations of the dependent classes are ”hidden” under in-
terfaces, thus change of some implementation can be done at one place where
dependencies are registered to the IoC container.

As the IoC container is used the Autofac with the ASP.NET MVC 3 integra-
tion [G.7]. Source code 3.19 shows registration of the Autofac IoC container as
default dependency resolver for the MVC and its configuration.

64

protected void Application_Start() {
var resolver = buildDependencyResolver();

.. DependencyResolver.SetResolver(resolver);
...

}

private IDependencyResolver buildDependencyResolver() {
var builder = new ContainerBuilder();
// registers all MVC controllers in this assembly
builder.RegisterControllers(typeof(MvcApplication).Assembly);

builder.RegisterType<StandardDateTimeProvider>()
.As<IDateTimeProvider>().SingleInstance();

builder.RegisterType<Sha512PasswordHasher>()
.As<IPasswordHasher>().SingleInstance();

builder.RegisterType<MalsysDb>()
.As<IUsersDb>()
.As<IInputDb>()
.As<IFeedbackDb>()
.InstancePerHttpRequest();

...
return new AutofacDependencyResolver(builder.Build());

}

Source code 3.19: Registration of the dependency container and its configuration

The IoC also allows to test the controllers more easily. Test methods can
pass special implementations of dependencies to tested controllers and simulated
desired behavior.

For example, instead of static DateTime class for getting current date is used
the IDateTimeProvider which is by default just wrapper around the static Date-
Time class but any test method can pass a special implementation which returns
always the same date (for example 29th of February) to test the behavior for that
concrete date. Also, simulation of the database is simpler. Source code 3.20 shows
the controller which has four dependencies as parameters of the constructor.

public class GalleryController : Controller {

public GalleryController(IMalsysInputRepository malsysInputRepository,
IAppSettingsProvider appSettingsProvider,
LsystemProcessor lsystemProcessor,
IDateTimeProvider dateTimeProvider) {

...
}
...

}

Source code 3.20: Registration of dependency container and its configuration

3.9.4 Removal of literal strings with the T4MVC
The ASP.NETMVC 3 framework contains many literal strings (also called ”magic”
strings). Those strings are used for referring the controllers, actions and views
but also the static files. The problem is that these magic strings must exactly
match to the names of class members or files. Big problem occurs when those
names are changed. The values of literal strings are not checked by the com-
pilation but the run-time error will occur. Also when literal strings have to be
written by hand, there is no intelli-sense for them and it is hard to write them
correctly in larger application. Also it is easy to misspell a literal string.

The MvcContrib project offers the T4 template called T4MVC which solves

65

this problem [G.8]. The T4 template generates hierarchy static classes in the
MVC and Links namespaces. They contain constants for all literal strings. Fig-
ure 3.10 shows code snippets with literal strings and in Figure 3.11 are replaced
by generated equivalents.

public virtual ActionResult Edit(string id, EditSavedInputModel model) {
...
return RedirectToAction("Detail", input.UrlId);

}

routes.MapRoute("Permalink",
"permalink/{id}",
new { controller = "Permalink", action = "Index" }

);

<p>... is the @Html.ActionLink("gallery", "Index", "Gallery") ...</p>

@Content.Css("~/Css/style.less.css")

<div class="logonBox">
@Html.Partial("~/Views/Shared/LogOnPartial.cshtml")

</div>

Figure 3.10: Code snippets showing literal strings in the ASP.NET MVC 3

public virtual ActionResult Edit(string id, EditSavedInputModel model) {
...
return RedirectToAction(Actions.Detail(input.UrlId));

}

routes.MapRoute("Permalink",
MVC.Permalink.Name.ToLower() + "/{id}",
new { controller = MVC.Permalink.Name, action = MVC.Permalink.ActionNames.Index }

);

<p>... is the @Html.ActionLink("gallery", MVC.Gallery.Index()) ...</p>

@Content.Css(Links.Css.style_less_css)

<div class="logonBox">
@Html.Partial(MVC.Shared.Views.LogOnPartial)

</div>

Figure 3.11: Code snippets with literal strings replaced by generated equivalents

3.9.5 Generated help pages
The web site contains extensive help which is crucial for processing L-systems.
The most of the pages are written by hand but the reference pages which lists all

66

the defined components, process configurations, defined constants and functions
are generated automatically. This is possible because the defined members are
documented directly in the code using the XmlDoc (see section 3.4.1).

For example, the help page with all the defined components is generated from
all the loaded components. This have an advantage over the static help because
the generated help pages describe exactly what can user use. If new component is
defined it automatically appears in the help. Source code 3.21 shows two action
methods of the PredefinedController which lists all the defined functions and
components.

public class PredefinedController : Controller {
public ActionResult Functions() {

return View(expressionEvaluatorContext.GetAllStoredFunctions());
}
public ActionResult Components() {

var components = componentContainer.GetAllRegisteredComponents();
...
return View(components);

}
...

}

Source code 3.21: Example of two action methods which lists all the defined
functions and components

Note that appendices J and K was also generated by the web with special
views which generate LATEX source. They are accessible on similar URLs as
traditional help (only with Latex suffix): /Help/Predefined/ComponentsLatex and
/Help/Predefined/ConfigurationsLatex.

3.9.6 Caching and compression
Caching and compression is important to minimize amount of transferred data
and to minimize the load of the server. This causes faster response and shorter
loading times for the user.

Server-side caching

Server caches all the pages with static content. This is important because some of
the static pages takes relatively long time to generate (for example the generated
help).

The static pages are not the same if some user is logged in. In the header
of the web page is user’s name and other user related buttons. This is why the
cache must vary by logged user.

Setting up the caching in the ASP.NET MVC 3 framework is done by marking
the action or controller with the OutputCache attribute. The cache profile can
be specified which is configured in the Web.config. Figure 3.12 shows snippets of
described caching setup. The last snippet is the implementation of varying the
cache by logged user.

Client-side caching

Some static files are not necessary to be transferred more than once to the user.
These are for example the CSS definitions, JavaScript scripts and the images.

67

[OutputCache(CacheProfile = "HelpCache")]
public class PredefinedController : Controller { ... }

<outputCacheProfiles>
<add name="HelpCache" duration="86400" varyByParam="user" />

</outputCacheProfiles>

public override string GetVaryByCustomString(HttpContext context, string custom) {
if (custom == "user") {

if (context.User.Identity.IsAuthenticated) {
return context.User.Identity.Name.ToLower();

}
else {

return "";
}

}
return base.GetVaryByCustomString(context, custom);

}

Figure 3.12: The controller marked with the cache attribute, configuration of the
cache profile and the implementation of varying cache by logged user

Web is configured to send these files with headers which says that client should
cache them for up to 30 days. This minimizes number of requests to the server.

This heavy caching is possible because as URL suffix is automatically placed
the hash from the static file’s date of the last change. If the static file changes its
URL will also change and the user will immediately download newer version.

The cache is especially important in the gallery where are many static files. In
Figure 3.13 is shown print-screen of the Google Chrome developer tools. On the
left image is the first-time loaded page, on the right is showed subsequent loading
of the same page. The bottom bar shows total number of downloaded bytes, you
can see that for the first time (the user’s cache is empty) the page needs 2.8 MB
to fully load but with cache it loads only 8.3 KB (that’s about 350× less). Also
only 1 connection to the server was established instead of 20.

Compression

To minimize amount of data transferred by from the server, static files are auto-
matically compressed by GZip compression (Source code 3.22).

<httpCompression minFileSizeForComp="1024">
<scheme name="gzip" dll="%Windir%\system32\inetsrv\gzip.dll" />

<staticTypes>
<add mimeType="text/*" enabled="true" />
<add mimeType="message/*" enabled="true" />
<add mimeType="application/javascript" enabled="true" />
<add mimeType="*/*" enabled="false" />

</staticTypes>
</httpCompression>

Source code 3.22: Compression part of the Web.config

68

(a) First-time loading (b) Subsequent loading

Figure 3.13: Google Chrome developer tools showing difference between first and
subsequent loading of the page

3.9.7 Error logging
For error logging is used third-party library called Elmah [G.9]. The Elmah is
configured for automatically logging all unhandled exceptions to the XML files.
The error log contains all information needed to trace the exception including
the stack trace, url, and all other data about HTTP request like GET and POST
data. The Elmah offers an HTTP module accessible on URL the /Elmah.axd
with a list of errors (Figure 3.14). This page is accessible only on the localhost
or by users in the Administrators role.

The unhandled exceptions raised by L-system processing library are caught
and logged using Elmah manually. This ensures that user do not looses the
processed input (because of redirect to the error page in the case of the unhandled
exception), just error message is showed.

public bool TryProcess(string sourceCode, IMessageLogger logger, ...) {
try {

var input = processManager.CompileAndEvaluateInput(sourceCode, ...);
...
processManager.ProcessInput(input, logger, ...);

}
catch (Exception ex) {

.. ErrorSignal.FromCurrentContext().Raise(ex); // log exception by Elmah
logger.LogMessage(Message.ExceptionWhileProcessingInput, ex.GetType().Name);
return false;

}
}

Source code 3.23: ...

69

Figure 3.14: Error log provided by Elmah

3.9.8 Cascading style sheets
The LESS library [G.10] was used to simplify work with the Cascading style sheets
(CSS). The LESS extends the CSS with dynamic behavior such as variables,
mixins, operations and functions. This allows to write more simple, maintainable
and clear definitions of the CSS.

Source code 3.24 shows the LESS source code and in Source code 3.25 shows
the same code compiled to the CSS.

@themeColor: #0F4D92;
@baseWidth: 960px;
...
.box−shadow−inset (@x: 0, @y: 0, @blur: 1px, @spread: 0, @color: #000) {

box−shadow: @arguments inset;
−moz−box−shadow: @arguments inset;
−webkit−box−shadow: @arguments inset;

}
...
body { min−width: @baseWidth; ... }
...
#header {

margin: 0 10px;
.navigation {

float: right;
a {

font−size: 1.25em;
&:hover { .box−shadow−inset(0, 0, 8px, 0, #FFF); ... } ...

} ...
} ...

}

Source code 3.24: Example of the LESS source code

70

body { min−width: 960px; }
#header { margin: 0 10px; }
#header .navigation { float: right; }
#header .navigation a { font−size: 1.25em; }
#header .navigation a:hover {

box−shadow: 0 0 8px 0 #ffffff inset;
−moz−box−shadow: 0 0 8px 0 #ffffff inset;
−webkit−box−shadow: 0 0 8px 0 #ffffff inset;

}

Source code 3.25: Compiled LESS code (Source code 3.24) to the CSS

The compilation of the LESS is automatic thanks to the HTTP handler from
the library .LESS (pronounced dot-less). The handler implicitly compiles the
LESS code into the CSS, the configuration is showed in Source code 3.26.

<system.web>
<httpHandlers>

<add path="*.less.css" verb="GET"
type="dotless.Core.LessCssHttpHandler, dotless.Core" />

</httpHandlers>
</system.web>
<dotless minifyCss="true" cache="true" web="false" />

Source code 3.26: Configuration of implicit LESS files compilation in Web.config

3.9.9 JavaScript
All JavaScript files are minimized with the Yahoo! UI Library [G.12] using a
custom T4 template which automates the minimalization process. Thanks to the
T4MVC template the original (non-minimized) JavaScript files are used in the
debug mode but minimized JavaScript files are used in the release mode.

71

72

4. Results
This section summarizes the results which are the L-system processing library
and the web user interface. At the end of this chapter are examples of rendered
images of L-systems produced by created program.

4.1 L-system processing library
Originally, the aim of this project was to create an online L-system processing
interface. However, during the work the L-system processing library showed to
be very universal and robust. It is written in the .NET framework and thanks to
the Mono project it is multiplatform and it can be used in other projects too.

The library is unique by its component-based processing of L-systems. Com-
ponents are connected to larger groups which allows to extend the system. The
connections are defined by input and can be redefined easily. The component
system is even capable to process other things than L-systems but it is limited
by input syntax which is specialized for L-systems.

Components can be implemented by users and configured by the input. Ex-
ample of implementation of a component can be found in appendix D. The library
provides a many utilities for component implementation which makes it easier.

The new syntax for L-systems was created and it is relatively simple to read
and understand. The syntax parser and compilers are extensible, thus syntax can
be improved or extended with minimal effort.

The example of processing of input with the library is in appendix E.

4.1.1 Unit tests
The functionality of the L-system processing library is tested by nearly 200 unit
tests. The tested parts are parsing, compilation and evaluation, processing of
the L-systems and also individual components like rewriting correctness of the
symbol rewriter.

Table 4.1 shows test coverage of the main projects. Note that some parts are
very hard to test (for example L-system renderers) thus the are not covered.

Project Coverage
Malsys 65%
Malsys.Ast 63%
Malsys.Common 42%

Table 4.1: Unit tests code coverage of main projects

73

4.2 Web user interface

Figure 4.1: http://malsys.cz

The web user interface was deployed and it is
accessible at http://malsys.cz. The main
function of the web user interface is to pro-
cess L-systems (detailed instructions can be
found in appendix C). The web site includes
the L-system gallery and the help section.

Any user can register and gain some ad-
vantages. Registered users can save and pub-
lish their L-systems to the public gallery and
they have longer time limit for processing of
L-systems.

Web page is displayed correctly in the
most common web browsers, namely: Google
Chrome, Opera, Firefox, Internet Explorer and
Safari. It is also possible to browse it on smart
phones or tablets. Figure 4.2 shows print-
screens of the first page of the gallery on various different operating systems.

If the browser window is wider than 1900 px the layout of the L-system process
page splits into two columns to allow to see the source code and the results
simultaneously. This feature is done purely in CSS 3.

The web page is supports pinning to the Windows taskbar (Figure 4.3).

Figure 4.2: A Jump-list of a pinned site and the header of an opened Internet
Explorer 9 using a pinned shortcut

4.2.1 Visitors and traffic
The web was officially released on 15 April 2012. Two days later notifications
on Twitter and Facebook were also posted. On this day the number of visitors
peeked at 142, but the most of these just checked the gallery and the next day
the messages on the social networks were lost.

About a week after the initial release, a short newsflash was posted on the
Czech server http://root.cz which attracted 255 visitors that day. But visitors
from root.cz were not just looking at the gallery. In contrast to the visitors from
the social network, users from root.cz started to experiment with L-systems.
This was probably because of the fact that root.cz is a site about computer

74

http://malsys.cz

http://malsys.cz

http://root.cz

(a) Windows 7 (Google Chrome)

(b) Android ICS (default
browser)

(c) Windows Phone (IE9
mobile)

(d) Amazon Kindle 3

Figure 4.3: The first page of the gallery displayed on various operating systems

75

technologies, software and programming, and thus users understood L-systems
better.

At the end of May, one and half months after its initial release, malsys.cz
has been seen by over 1000 unique visitors and these visitors browsed over 9000
pages. Till the end of May unregistered users processed over 2000 L-systems.

4.3 Some solution statistics
Table 4.2 shows number of lines of code based on file types. Listed numbers do
not include generated code (if not otherwise stated). Also note that the help
pages with predefined stuff on the web are generated dynamically and thus their
content is not included in the statistics of total line count.

Extension Type Line count Comment
.cs C# > 30 000
.fs, .fsy, .fls F# > 1 000 F# files together with lexer and parser

definitions
.cshtml Razor > 10 000 views of the razor view engine
.generated.cs,
.designer.cs

C# > 5 000 automatically generated files

Table 4.2: Number of lines of code written by hand (if not otherwise stated)
based on file types

4.4 Showcase of L-systems
The most L-systems are used in this thesis as figures illustrating described themes.
In this section are images of some more L-systems.

Figure 4.4: T-square fractal (left) and its generalization to 3D with pyramids
instead of squares (right)

76

Figure 4.5: Hexagonal Gosper curve

\ \

________ ____ \
\ \ / /
____ ____/ / ____

/ \ \ \
____/ ________ \ \ \

/ \ \ \ /
/ ____ ____ \ \/
\ \ \ / /
\ \ ____/ / ____
\ / \ / /
\/ ________ \/ /

\ \ /
____ ____/

/
____/

Figure 4.6: Hexagonal Gosper curve as polygon (left) and as ASCII art (right)

77

Figure 4.7: Islands and lakes

Figure 4.8: Basic (left) and inverted (right) Sierpinski triangles

78

Figure 4.9: Penrose tiling

Figure 4.10: Circles (left) and its generalized version in 3D (right)

79

Figure 4.11: Lilac panicle

80

Figure 4.12: Hilbert curve 3D

Figure 4.13: Dekking’s chirch (left) and Hilbert curve (right)

81

Figure 4.14: Sunflower

Figure 4.15: Models of plant-like structures with withered dandelion in the middle

82

Conclusion
The goal of this work was to an create online feature-rich development envi-
ronment for anyone who wants to experiment with L-systems. This goal was
achieved and the result can be seen at http://malsys.cz. However more than
just a web-based L-system generator was created.

Figure 4.16: Needlework of Hexagonal
Gosper curve

As part of the solution a stan-
dalone modular L-system processing
library has been created which can
process L-systems with component-
based system. Component system
and configuration of individual compo-
nents is defined in the input together
with L-systems. The components can
be created or extended by the user
which brings great extensibility to the
L-system processing. Many compo-
nents are already part of the library.
They are used on the web to process
L-systems and produce 2D images and
3D scenes or even ASCII art.

A component is a piece of the pro-
gram and thus it can do anything.
For example, it is possible to create
a special component which will inter-
pret L-system symbols as commands
for some CNC1 sewing machine which
can sew a design as an ornament onto a
T-shirt, carpet or curtain (Fig. 4.16).
If a stochastic L-system would be used then no two T-shirts will have the same
design on them. This example may seem relatively bizarre but it does reflect the
extensibility of the library well.

Part of the created web interface is the gallery of L-systems with more than
50 inserted L-systems (at the time of publishing this thesis) and it is slowly
becoming a unique database of all basic L-systems. Any registered user can save
their L-systems and publish them on the gallery. Published L-systems can be
rated by others.

Future work
The web user interface does not provide any way for some form of communication
between users. A great improvement would be the possibility to add comments to
the gallery entries and write personal messages to other users. Also some simple
forum could be helpful.

1CNC stands for Computer Numerical Control and refers specifically to a computer controller
which drives a powered mechanical device that, for instance, uses a number of different tools,
drills, saws, etc., for fabricating items using materials like metal or wood.

83

http://malsys.cz

The L-system processing library was written with an emphasis on functionality
and simplicity, and not performance. The performance for processing L-system
on the web is sufficient because it is not even possible to display large outputs
in web browsers. However there are many areas where improvements could be
made. For example, the compiler could optimize expression trees to eliminate
static expressions (1 + 2 → 3).

Because of the component-based design of the L-system processing library it is
possible to extend it with a minimum of effort. The plan was to create a renderer
component which renders the L-systems as a scene with the PovRay ray-tracer
but there was insufficient time to implement this.

The syntax parser has poor error recovery which should be improved. Some
syntax errors even do not show their position.

84

Bibliography
[CD93] K. Culik and S. Dube. L-systems and mutually recursive function sys-

tems. In: Acta Informatica 30.3 (1993), pp. 279–302. issn: 0001-5903
(cit. on p. 5).

[Dun10] R. Dunlop. Avatar. May 2010. url: http://cgsociety.org/index.
php/CGSFeatures/CGSFeatureSpecial/avatar (visited on 03/2012)
(cit. on p. 5).

[Khr12] Khronos Group. WebGL – OpenGL ES 2.0 for the Web. 2012. url:
http://www.khronos.org/webgl/ (visited on 03/2012).

[HCJ99] C. Hazard, K. Catherine, and D. Johnson. Fractal Music. 1999. url:
http://www.tursiops.cc/fm/ (visited on 03/2012) (cit. on p. 5).

[Lin68] A. Lindenmayer. Mathematical models for cellular interactions in de-
velopment. In: Journal of theoretical biology Parts I and II 18.3 (1968),
pp. 280–315 (cit. on p. 5).

[Man06] S. Manousakis. Musical L-systems. In: Unpublished master thesis, In-
stitute of Sonology, The Hague (2006) (cit. on p. 5).

[MP96] R. Měch and P. Prusinkiewicz. Visual models of plants interacting with
their environment. In: Proceedings of the 23rd annual conference on
Computer graphics and interactive techniques. ACM. 1996, pp. 397–
410 (cit. on p. 35).

[PH93] P. Prusinkiewicz and M. Hammel. A fractal model of mountains and
rivers. In: Graphics Interface. Vol. 93. Canadian Information Process-
ing Society. 1993, pp. 174–180 (cit. on p. 5).

[PL91] P. Prusinkiewicz and A. Lindenmayer. The algorithmic beauty of plants.
In: (1991) (cit. on pp. 11, 12, 15, 58, 95–98, 100).

[PM01] Y.I.H. Parish and P. Müller. Procedural modeling of cities. In: Pro-
ceedings of the 28th annual conference on Computer graphics and in-
teractive techniques. ACM. 2001, pp. 301–308. isbn: 1-58113-374-X
(cit. on p. 5).

[Pru*03] P. Prusinkiewicz et al. L-system description of subdivision curves. In:
International Journal of Shape Modeling 9.1 (2003), pp. 41–59 (cit. on
p. 5).

[Pru85] P. Prusinkiewicz. Graphical applications of L-systems. Department of
Computer Science, University of Regina, 1985 (cit. on p. 5).

[Šťa*10] O. Šťava et al. Inverse Procedural Modeling by Automatic Generation
of L-systems. In: Computer Graphics Forum. Vol. 29. 2. Wiley Online
Library. 2010, pp. 665–674 (cit. on p. 5).

[Wor08] D. Worrall. Lyndenmeyer Systems Tutorial. May 2008. url: http:
//worrall.avatar.com.au/courses/Lsystems/index.html (visited
on 03/2012) (cit. on p. 5).

[Žár*04] J. Žára et al. Moderní počítačová grafika. Computer press, 2004 (cit. on
p. 12).

85

http://cgsociety.org/index.php/CGSFeatures/CGSFeatureSpecial/avatar

http://cgsociety.org/index.php/CGSFeatures/CGSFeatureSpecial/avatar

http://www.khronos.org/webgl/

http://www.tursiops.cc/fm/

http://worrall.avatar.com.au/courses/Lsystems/index.html

http://worrall.avatar.com.au/courses/Lsystems/index.html

86

List of Abbreviations
API application programming interface, page 6

AST abstract syntax tree, page 28

CSS Cascading style sheets, page 70

DB database, page 64

DLL dynamic-link library, page 53

EF Entity framework, page 24

FAQ frequently asked questions, page 42

GPU graphics processing unit, page 6

GZip GNU zip (software for file compression and decompression), page 68

HTML5 hypertext markup language, page 6

HTTP Hypertext transfer protocol, page 61

IDE integrated development environment, page 23

IE Internet Explorer, page 75

IoC inversion of control, page 50

MsSQL Microsoft SQL (server), page 24

MVC model-view-controller (design pattern), page 23

ORM object-relational mapping, page 24

OS operating system, page 41

PHP PHP: Hypertext preprocessor (scripting language), page 20

SQL structured query language, page 24

ST semantic tree, page 28

T4 text template transformation toolkit, page 23

URL uniform resource locator (a reference to an Internet resource), page 61

WebGL web graphics library, page 6

87

List of Figures
1 Examples of models created by an L-system 5
2 Menger sponge created by an L-system 6

1.1 Examples of interpretation of simple string of symbols 11
1.2 The first, second and fourth iteration of the Cesaro curve 11
1.3 Enhanced Cesaro curve . 11
1.4 Dragon curve . 12
1.5 The first four iterations of a bracketed L-system 13
1.6 A comparison between a non-randomized and randomized plant

model . 14
1.7 Signal propagation simulated with context-sensitive bracketed L-systems

. 17
1.8 Parameters usage in L-system interpretation methods and in rewrite

rules along with the result . 18
1.9 Pythagoras tree created with parametric L-system 18
1.10 Image produced by WWW L-system Explorer 20
1.11 A plant example from L-system Vector Generator 21
1.12 Model of Lily produced by L-studio 22

2.1 The extension of component-based processing system 24
2.2 Possible outputs from process systems in Figure 2.1 25
2.3 Example of source code along with the result – Sierpinski gasket . 26
2.4 Source code compilation system 28
2.5 Abstract syntax tree parsed from Source code 2.4 29
2.6 Semantic tree created by compilation of the AST in Figure 2.5 . . 29
2.8 Input processing scheme . 30
2.7 A more complex semantic tree of Source code 2.5 31
2.9 Correctly colored stochastic L-system 33
2.10 Simple L-system processing system 35
2.11 Subdivided L-system processing system 35
2.12 Automated interpreter caller . 36
2.13 Input for the iterator can be supplied by another component . . . 36
2.14 Component system for interpretation of a symbol as another L-system

. 37
2.15 Example of interpreting s symbol as another L-system 38
2.16 Final component system . 40
2.17 Logo of the web . 41
2.18 First half of the database scheme of the web 43
2.19 Second half of the database scheme of the web 44

3.1 The dependencies of projects in the solution 47
3.2 Hierarchy of the compilers . 49
3.3 Example of the add operation to the immutable tree 56
3.4 Result of L-system in Source code 3.8 56
3.5 The context search tree . 57
3.6 Ambiguous triangulation of four points 59

88

3.7 Complex 3D polygon triangulated with three different strategies . 60
3.8 MVC design pattern . 61
3.9 Rendered registration form with incorrectly entered e-mail address

and too short password . 63
3.10 Code snippets showing literal strings in the ASP.NET MVC 3 . . 66
3.11 Code snippets with literal strings replaced by generated equivalents 66
3.12 Example of the usage of cache . 68
3.13 Google Chrome developer tools showing difference between first

and subsequent loading of the page 69
3.14 Error log provided by Elmah . 70

4.1 QR code for http://malsys.cz . 74
4.2 A Jump-list of a pinned site and the header of an opened Internet

Explorer 9 using a pinned shortcut 74
4.3 The first page of the gallery displayed on various operating systems 75
4.4 T-square fractal (left) and its generalization to 3D with pyramids

instead of squares (right) . 76
4.5 Hexagonal Gosper curve . 77
4.6 Hexagonal Gosper curve as polygon (left) and as ASCII art (right) 77
4.7 Islands and lakes . 78
4.8 Basic (left) and inverted (right) Sierpinski triangles 78
4.9 Penrose tiling . 79
4.10 Circles (left) and its generalized version in 3D (right) 79
4.11 Lilac panicle . 80
4.12 Hilbert curve 3D . 81
4.13 Dekking’s chirch (left) and Hilbert curve (right) 81
4.14 Sunflower . 82
4.15 Models of plant-like structures with withered dandelion in the middle 82
4.16 Needlework of Hexagonal Gosper curve 83

B.1 Some iterations of the MycelisMuralis L-system 101

C.2 The branching in the Pythagoras tree with branches as squares . 103
C.1 L-system processing interface . 104
C.3 The first square of the Pythagoras tree 105
C.4 Branching of the Pythagoras thee 106
C.5 Growing Pythagoras tree . 107
C.6 Pythagoras tree rendered in 3D 109
C.7 Results of finished L-system of the Pythagoras tree 109

D.1 Testing process configuration . 113
D.2 The result of processing . 116
D.3 Extended SymbolPrinter process configuration with the filter com-

ponent . 116

F.1 Creation of publish the package in the Visual Studio 2010 123
F.2 Marked products to install in the Web Platform Installer 124
F.3 App pool settings dialogs . 126
F.4 Filled Add Web Site dialog . 126
F.5 Rights of the App_Data directory 127

89

List of Tables
1.1 Result of the L-system in Source code 1.1 10
1.2 An axiom and the first 6 iterations of an L-system in Source

code 1.6 showing signal propagation in the given string of sym-
bols . 16

1.3 Examples of context matching in bracketed L-systems 16
1.4 The result of the L-system simulating acropetal signal propagation

in Source code 1.7 . 17

4.1 Unit tests code coverage of main projects 73
4.2 Number of lines of code written by hand (if not otherwise stated)

based on file types . 76

H.1 Meaning of syntax of regular expressions 133

90

List of source codes
1.1 A simple L-system as an example of rewriting principles 10
1.2 Another symbol interpretation example 11
1.3 D0L-system for the generation of the Dragon curve (Figure 1.4) . 12
1.4 A bracketed L-system that which creates a plant-like model (Fig-

ure 1.5) . 13
1.5 Stochastic L-system with randomized interpretation of symbols

and rewrite rule replacements . 15
1.6 Context-sensitive L-system simulating signal propagation 15
1.7 The L-system simulating acropetal signal propagation (Figure 1.7a) 17
2.1 Example of array syntax. 27
2.2 Example L-systems inheritance. 27
2.3 Example of the array syntax. 28
2.4 Constant definition statement for example of AST 28
2.5 This source code results in the semantic tree shown in Figure 2.7 30
2.6 Stochastic L-system with a variable number of line segments . . . 34
2.7 Source code of L-system (Fig. 2.15f) demonstrating use of an

interpreting symbol as another L-system 39
3.1 Example of the definition file for the FsLex tool 48
3.2 Example of definition file for FsYacc 48
3.3 General interface for the compilers, interface for the constant def-

inition compiler and its implementation 50
3.4 General interface for compilers and interface for the expression

compiler . 50
3.5 Interface of the ProcessManager class 51
3.6 Example of usage the XmlDoc for documentation of a component 53
3.7 Interface of the ProcessManager class 54
3.8 L-system . 56
3.9 Implementation of the Yaw method of the TurtleInterpreter . . . 58
3.10 Implementation of the tropism which is applied after each line . . 58
3.11 Example of routes definition . 61
3.12 The Detail method of the Gallery controller 61
3.13 Gallery detail view demonstrating the Razor syntax 62
3.14 Model class with data annotations 62
3.15 Part of user registration view . 62
3.16 Process time settings in the Web.config 63
3.17 The working directories settings in the Web.config file 64
3.18 Additional setting in the Web.config file 64
3.19 Registration of the dependency container and its configuration . . 65
3.20 Registration of dependency container and its configuration 65
3.21 Example of two action methods which lists all the defined functions

and components . 67
3.22 Compression part of the Web.config 68
3.23 ... 69
3.24 Example of the LESS source code 70
3.25 Compiled LESS code (Source code 3.24) to the CSS 71

91

3.26 Configuration of implicit LESS files compilation in Web.config . . 71
C.1 Final L-system of the Pythagoras tree 108
D.1 Filter component with static filtering 112
D.2 L-system code for testing the filter component 113
D.3 Filter component with static filtering 114
D.4 L-system code for testing improved filter component 115
D.5 L-system code for testing improved filter component 116
D.6 Test of extended SymbolPrinter process configuration with created

filter component . 117
D.7 Symbol filter component with documented members 118
E.1 Symbol filter component with documented members 120
E.2 Symbol filter component with documented members 121
G.1 Example of code contracts in the Triangularize method of the

Polygon3DTrianguler class. 130
G.2 Usage of the Grid component to show list of user roles 131

92

A. Contents of attached CD
Contexts of attached CD are listed in the following directory tree.

src – contains the source codes
ExamplePlugin – example plugin, contains a component whose imple-

mentation is explained in appendix D
Malsys – L-system processing library
Malsys.Ast – abstract syntax tree
Malsys.Common – common functionality
Malsys.Parsing – lexer and parser (in F#)
Malsys.Tests – unit tests
Malsys.Web – web user interface
packages – third party libraries

doc – contains generated documentation and a PDF file with this thesis

93

94

B. About figures
All images of L-systems in this thesis (if not stated otherwise) are created in the
created web by written L-system processing library. Some source codes in the
thesis and may be simplified because of lack of the space. This appendix contains
additional information about figures and their source codes.

Figure 1a, 4.11 [page 5, 80] 3D model of lilac panicle [PL91, p. 92]. Some
blooms have 4 and some 5 leafs.
lsystem LilacInflorescences extends Branches {

// A(energy, branchEnergy)
set symbols axiom = F(50) A(12, 5);
set iterations = 12;

interpret F as DrawForward(10, 2, #00AA00);
interpret K(age) as lsystem Bloom(age);
interpret + as Pitch(60);
interpret - as Pitch(-60);
interpret / as Roll(90);

rewrite A(energy) where energy <= 0 to K(1);
rewrite A(energy, branchEnergy) to [- / K(1)] [+ / K(1)]

I(0, branchEnergy) / A(energy - 1, branchEnergy);
rewrite I(t, energy) where energy <= 0 to nothing;
rewrite I(t, energy) with e = energy - 1, be = energy where t==2

to I(t + 1, e) [- F F A(e, be)] [+ F F A(e, be)];
rewrite I(t, e) to F I(t + 1, e - 1);
rewrite K(age) to K(age + 1);

}
abstract lsystem Bloom(age = 4) extends Polygons {

let color = #d649ff;
let leafCount = round(random(3.5, 5.5));
let angle = 150 / leafCount;
let size = min(4, age);

set symbols axiom = F [G(1.5) K] leaf;
set iterations = leafCount;

interpret F as DrawForward(size * 2.5, 1 + size / 4, color);
interpret G as MoveForward(size * 2.5);
interpret K as DrawSphere(size / 2, #ffff00);
interpret + as Yaw(angle);
interpret - as Yaw(-angle);
interpret | as Yaw(180);
interpret / as Roll;
interpret ^ as Pitch(-15);

rewrite leaf to /(360 / leafCount) [^(40 + 10*size) <(color) .
+ ^ G . - ^ G . - ^ G . + | + G . - ^ G . >] leaf;

}
process all with ThreeJsRenderer;

Figure 1b [page 5] H-tree fractal [PL91, p. 50].
lsystem Htree(R = sqrt(2)) extends Branches {

set symbols axiom = + A(1);
set iterations = 11;
set lineCap = none;

interpret F(x) as DrawForward(R^x * 2 ^ -(currentIteration / 2) * 256, x);
interpret + as TurnLeft(90);
interpret - as TurnLeft(-90);

rewrite A to F(1) [+A] [-A];
rewrite F(x) to F(x + 1);

95

}
process all with SvgRenderer;

Figure 2 [page 6] Menger sponge.
lsystem MengerSponge {

set iterations = 3;
set symbols axiom = F;

interpret F as DrawForward(10, 10, #FFFFFF);
interpret f as MoveForward(5);
interpret + as Yaw(90);
interpret - as Yaw(-90);
interpret ^ as Pitch(90);
interpret & as Pitch(-90);

rewrite F to - f f + & f f ^ F F F +f+f- F F +f+f- F F +f+f- F
-f+f+f^f F F &f&f^ F F &f&f^ F ^ ^ f f f & + f F F &f&f^ F
^ ^ f f f & + f F F &f&f^ F ^ ^ f f f & + f F f & f f ^ +
+ f f - f f f f f;

rewrite f to f f f;
}
process all with ThreeJsRenderer;

Figure 1.3 [page 11] Row of trees [PL91, p. 48].
lsystem RowOfTrees {

set symbols axiom = F(1, 0);
set iterations = 10;
let p = 0.3;
let q = 1-p;
let h = (p*q)^0.5;

interpret F(x) as DrawForward(x * 2 ^ -(currentIteration / 10) * 1024,1);
interpret + as TurnLeft(86);
interpret - as TurnLeft(-86);

rewrite F(x,t) where t == 0 to F(x*p,2) + F(x*h,1) - - F(x*h,1) + F(x*q,0);
rewrite F(x,t) to F(x,t-1) ;

}
process all with SvgRenderer;

Figure 2.2 [page 25] Tree model with simulated gravity [PL91, p. 60]. The tree
is actually in 3D but it is rendered as 2D. It is possible to render 3D model using
the ThreeJsRenderer.

Changing the d1, d2, angle, l and w parameters can be created different tree
model.
lsystem Tree extends Branches {

let d1 = 94.74; let d2 = 132.63; // divergence angle 1 and 2
let angle = 18.95; // branching angle
let l = 1.109; let w = 1.732; // length and width increase rate

set symbols axiom = /(45) F(100, 1) A;
set iterations = 6;
set initialAngle = 90;

.. set tropismVector = {0, -1, 0};

.. set tropismCoefficient = 0.15;

interpret F as DrawForward;
interpret f as MoveForward;
interpret & as Pitch(-angle);
interpret / as Roll;

rewrite A to F(50, w) [& F(50, 1) A] /(d1)

96

[& F(50, 1) A] /(d2) [& F(50, 1) A];
rewrite F(length, width) to F(length * l, width * w);
rewrite f(length) to F(length * w);

}
process all with SvgRenderer;

Figure 2.17, 4.14 [page 41, 82] Sunflower [PL91, p. 103]. The number of seeds
and leafs is configurable.
lsystem Sunflower(..seedCount = 300, altSeedCount = 50, greenLeafCount = 15,
.. yellowLeafCount = 35) extends Branches {

set symbols axiom = A(0);
set iterations = seedCount + altSeedCount + greenLeafCount + yellowLeafCount;

interpret f as MoveForward;
interpret Seed as DrawForward(24, 18, #332211);
interpret AltSeed as DrawForward(24, 18, #24180C);
interpret GreenLeaf as lsystem Leaf(lighten(#00AA00, random(0, 0.1)));
interpret YellowLeaf as lsystem Leaf(lighten(#E5C500, random(0, 0.1)));
interpret + as Yaw(137.515);
interpret / as Roll(45);
interpret ^ as Pitch(90);
interpret & as Pitch(-90);

let altSeedTreshold = seedCount;
let greenLeafTreshold = seedCount + altSeedCount;
let yellowLeafTreshold = seedCount + altSeedCount + greenLeafCount;

rewrite A(n) where n > yellowLeafTreshold
to + [f(n^0.5 * 10 - 20) ^(random(5, 15)) YellowLeaf] A(n+1);

rewrite A(n) where n > greenLeafTreshold
to + [f(n^0.5 * 10 - 20) & f(10) ^ ^(random(0, 5)) GreenLeaf] A(n+1);

rewrite A(n) where n > altSeedTreshold
to + [f(n^0.5 * 10) ^ f(-12) /(random(-20, 20)) AltSeed] A(n+1);

rewrite A(n) to + [f(n^0.5 * 10 - 10) / Seed] A(n+1);
}
abstract lsystem Leaf(color = #E5C500) extends Polygons {

let la = 5; let ra = 1.1; let lb = 1; let rb = 1.2; let pd = 1;
let angle = 60;
set symbols axiom = [[+(angle) ^ B(0) <(color) .] A(1, angle) . >]

[[+(-angle) ^ B(0) <(color) .] A(1, -angle) . >];
set iterations = random(18, 20);

interpret G as MoveForward;
interpret + as Yaw(60);
interpret - as Yaw(-60);
interpret ^ as Pitch(10);

rewrite A(t, angle) to . G(la, ra) . [+(angle) ^ B(t) . >]
[+(angle) ^ B(t) <(color) .] A(t+1, angle);

rewrite B(t) where t > 0 to G(lb, rb) B(t - pd);
rewrite G(s, r) to G(s*r, r);

}
process all with ThreeJsRenderer;

Figure 3.7 [page 60] A spiral polygon demonstrating capabilities of 3D trian-
gulizer.
lsystem Spiral3D extends Polygons {

set symbols axiom = <(#AAAAAA) . X + F . + Y >;
set iterations = 14;

.. set polygonTriangulationStrategy = maxDistanceFromNonTriangulated;

interpret F as MoveForward(1);
interpret + as Yaw(60);
interpret - as Yaw(-60);
interpret ^ as Pitch(10);

97

interpret & as Pitch(-10);

rewrite X to ^ F F . & + X;
rewrite Y to & & F . ^ ^ - Y;

}
process all with ThreeJsRenderer;

Figure 4.4 [page 76] 3D T-square fractal with pyramids instead of squares.
lsystem TPyramid extends Branches {

let size = 64;
set symbols axiom = F(size) f(-size/2) + f(size/2) + + [X(size/2)] f(size) +

[X(size/2)] f(size) + [X(size/2)] f(size) + X(size/2);
set iterations = 5;

interpret F(x) as lsystem Pyramid(x);
interpret f as MoveForward;
interpret + as Yaw(90);

rewrite X(s) with h = s / 2
to F(s) f(-h) + f(h) + + [X(h)] f(s) + [X(h)] f(s) + X(h);

}
abstract lsystem Pyramid(size = 20, color = #F3E3B9) extends StdLsystem3D {

let h = size / 2; let sq = h * sqrt(3); let a = 90 - rad2deg(asin(sqrt(2/3)));
set symbols axiom = [^(90) f(h) &(90) +(45)

[<(color) . &(a) f(sq) . ^(a) +(135) f(size) . >] +(90)
[<(color) . &(a) f(sq) . ^(a) +(135) f(size) . >] +(90)
[<(color) . &(a) f(sq) . ^(a) +(135) f(size) . >] +(90)
[<(color) . &(a) f(sq) . ^(a) +(135) f(size) . >]];

}
process all with ThreeJsRenderer;

Figure 4.5 [page 77] Hexagonal Gosper curve [PL91, p. 12].
lsystem HexagonalGosperCurve {

set symbols axiom = L;
set iterations = 5;
set continuousColoring = true;

interpret R L as DrawForward(4);
interpret + as TurnLeft(60);
interpret - as TurnLeft(-60);

rewrite L to L + R + + R - L - - L L - R +;
rewrite R to - L + R R + + R + L - - L - R;

}
process all with SvgRenderer;

Figure 4.7 [page 78] Islands and lakes (colored) [PL91, p. 9]
lsystem IslandsAndLakesColored extends Polygons {

let darkColor = #000000;
let lightColor = #FFFFFF;

set symbols axiom = <(darkColor,0) . f. - f. - f. - f. >;
set iterations = 2;
set reversePolygonOrder = true;

interpret f g as MoveForward(8);
interpret + as TurnLeft(90);
interpret - as TurnLeft(-90);

rewrite f to f + g <(darkColor, 0) . f. - f. f. - f. - f. f. > + g + f f
- g <(lightColor, 0) . f. + f. f. + f. + f. f. > - g - f f f;

rewrite g to g g g g g g;
}
process all with SvgRenderer;

98

Figure 4.8 [page 78] Sierpinski triangles
lsystem SierpinskiTrangle extends Polygons {

set symbols axiom = F + F + F;
set iterations = 6;

interpret F f as MoveForward(2 ^ -currentIteration * 600);
interpret + as TurnLeft(120);
interpret - as TurnLeft(-120);

rewrite F to <(0,0) . F . + F . > + f + f F;
rewrite f to f f;
rewrite < to nothing;
rewrite . to nothing;
rewrite > to nothing;

}
process all with SvgRenderer;

Figure 4.9 [page 79] Penrose tiling.
lsystem PenroseTiling extends StdLsystem {

set symbols axiom = [N] + + [N] + + [N] + + [N] + + [N];
set iterations = 5;

.. set reversePolygonOrder = true;
let darkClr = #221166; // dark blue
let lightClr = #FFCC66; // dark yellow

interpret M N O P as MoveForward(2 ^ -(currentIteration / 2) * 200);
interpret + as TurnLeft(36);
interpret - as TurnLeft(-36);

rewrite M to O + + <(darkClr,2,#0) . P . - - - - N . [- O . - - - - M . >] + +;
rewrite N to + <(lightClr,2,#0) . O . - - P . [- - - M . - - N . >] +;
rewrite O to - <(lightClr,2,#0) . M . + + N . [+ + + O . + + P . >] -;
rewrite P to - - <(darkClr,2,#0) . O . + + + + M . [+ P . + + + + N . >] - - N;

}
process all with SvgRenderer;

Figure 4.10 [page 79] 3D version of Circles fractal. Bigger circles are made
from more polygons (see the third parameter of the DrawSphere interpretation
method).
lsystem Circles3D extends Branches {

set symbols axiom = [X(60)] + [X(60)] + [X(60)] + X(60);
set iterations = 3;

.. set smoothShading = true;

let scale = 3;
interpret F as MoveForward;
interpret K(n) as DrawSphere(n, #FFFFFF, ..n^(1/3));
interpret + as Yaw(90);
interpret - as Yaw(-90);
interpret ^ as Pitch(90);
interpret & as Pitch(-90);

rewrite K(n) to K(2*n);
rewrite F(n) to F(2*n);
rewrite X to K(2 * scale) F(3 * scale) [+ X] [- X] [^ X] [& X] X;

}
process all with ThreeJsRenderer;

Figure 4.12 [page 81] 3D Hilbert curve.
lsystem HilbertCurve3D extends StdLsystem3D {

set iterations = 4;
set symbols axiom = X;
set continuousColoring = true;

99

interpret F as DrawForward(16,2);
interpret f as MoveForward(-1);

rewrite X to ^ \textbackslash X f F ^ \textbackslash X f F X - f F ^ / /
X f F X & f F + / / X f F X - f F / X - /;

}

process all with ThreeJsRenderer;

Figure 4.13a [page 81] Dekkings church, Advances in Math, vol. 44, 1982, pp.
78-104. Works only for odd iterations.
lsystem DekkingsChurch {

set symbols axiom = w x y z;
set iterations = 7;

interpret F as DrawForward(8);
interpret + as TurnLeft(90);
interpret - as TurnLeft(-90);

rewrite F to nothing;
rewrite w to F w + F - z F w - F + x;
rewrite z to + + F - - y - F + x + + F - - y - F + x;
rewrite y to + + F - - y + F - z;
rewrite x to F w + F - z;

}
process all with SvgRenderer;

Growing plant Following L-system simulates the growth of the Mycelis mu-
ralis [PL91, p. 89]. Those lucky ones who have a printed version of this thesis can
watch the animation of the growth in the bottom left corner of this thesis. Just
turn the thesis with face down, open it, grab all pages at the bottom corner and
slowly drop one page after another with a thumb. Figure B.1 shows some frames
of the animation.
lsystem MycelisMuralis extends StdLsystem {

set symbols axiom = I(20) F A(0);
set iterations = 50;
set initialAngle = 90;
set scale = 4;
set symbols contextIgnore = + / F W I K;

interpret K as DrawSphere(3);

rewrite {S} A to T V K;
rewrite {V} A to T V K;
rewrite A(t) where t > 0 to A(t-1);
rewrite A(t) to M [+(30) G] F /(180) A(2);
rewrite {S} M to S;
rewrite S {T} to T;
rewrite {T} G to F A(2);
rewrite {V} M to S;
rewrite T {V} to W;
rewrite W to V;
rewrite I(t) where t > 0 to I(t - 1);
rewrite I to S;

}
process all with SvgRenderer;

100

(a)
1

(b)
20

(c)
41

(d)
45

(e) 50 (f) 55 (g) 60 (h) 65

(i) 70 (j) 75 (k) 80

(l) 90 (m) 98 (n) 110

Figure B.1: Some iterations of the MycelisMuralis L-system

101

102

C. User documentation
In this appendix is explained how to process the L-systems in the web user inter-
face. There is also a step-by-step tutorial how to create an L-system from scratch
– the Pythagoras tree.

C.1 How to process L-system
Processing of the input on the web is fairly easy. Following explanation will be
referring to Figure C.1.

To process the L-system click on the L-system processor link (A) in the main
menu of the web, enter the the L-system code into the text area (C) and click the
Process & display results button. Then you will see the results (D) and eventually
some warnings or errors (B).

C.2 Creation of the Pythagoras tree
The creation of actual L-system is little bit harder. Lets start with explanation
of the Pythagoras tree itself.

The Pythagoras tree is a binary tree which starts from the root1. Two other
branches grows each branch (including the root). It is named by the Pythagoras
because if we denote the length of the base branch as c and the length of branches
raised from the base branch as a and b the Pythagorean theorem describes theirs
relation as c2 = a2 + b2. If the branches are drawn as squares, the formula also
says that the area of the base square is equal to sum of the areas of its child
squares. The relation applies to all the squares in the tree.

Pythagoras can be easily built from squares, the angle of branches determines
the size of the squares. The branching setup is shown in Figure C.2. If we denote
the left angle of the triangle as α and the length of the edge of the base square
as c then the length of the edge of the left branch is equal to the b = c · cos(α)
and similarly for the right branch (a = c · sin(α)).

.. α. β.

b

.

b
2

.

a

.

a
2

.
c

Figure C.2: The branching in the Pythagoras tree with branches as squares

Lets try to draw similar scheme using the L-system. For drawing we will
use the SvgRenderer process configuration which renders the L-systems with 2D
turtle graphics.

1The root is at the bottom (note for computer scientists).

103

Figure C.1: L-system processing interface

104

Firstly, we need to draw a square. The simplest square is a line with the same
width as length. If we look in the consolidated documentation of the SvgRenderer
process configuration (appendix K) in the section Interpretation methods we can
see that there is a method called DrawForward which is exactly what we need.

Lets write our first code. We start with the L-system called PythagorasTree
with the axiom containing single symbol which will be interpreted as a square.
Also we set the scale to 100 (to be able to see the result well) and initial angle to
90◦ to start to move up (instead of right). These properties can be found in the
section Settable properties of mentioned documentation (appendix K). The code
and its result is shown in Figure C.3

lsystem PythagorasTree {
set symbols axiom = S;
set scale = 100;
set initialAngle = 90;
interpret S as DrawForward(1, 1);

}
process PythagorasTree with SvgRenderer;

Figure C.3: The first square of the Pythagoras tree

The first problem is obvious. By default, lines have round caps. After a quick
look into the documentation there is a property called lineCap. Its value 0 will
remove the round caps. To keep the source code more readable we can use a
predefined constant none for it (see appendix I.2.1).

set lineCap = none;

Now we need an angle for counting the sizes of the branches. We will define
the angle as a local variable called alpha with vale of 90◦. The value of the β
angle (in Figure C.2) is obviously 90 − α so we can define it as a local variable
too.
let alpha = 30;
let beta = 90 - alpha;

To be able to turn by these angles we must define an interpretation methods.
Lets define the symbol + as turn left by α degrees and symbol - as turn right by
β degrees (equally as turn left by −β degrees).

interpret + as TurnLeft(alpha);
interpret - as TurnLeft(-beta);

We need to be able to draw branches easily. For this are the Bracketed
L-systems which allows saving and loading of the interpretation state. We can
define the interpretation on our ow by following code.
interpret [as StartBranch;
interpret] as EndBranch;

However it is much easier to just inherit the Branches L-system which will do
the trick.
lsystem PythagorasTree extends Branches {

105

To be able to draw squares with any size we will upgrade the interpretation
rule to take single parameter from the interpreting symbol and use it as line
length and width.
interpret S(size) as DrawForward(size, size);

The last thing we need to do is to skip the space between base square and
the branch (mark as dotted line in Figure C.2). For this we have the interpreta-
tion method called MoveForward. We do not need to define explicit parameters
because all parameters from interpreted symbol are automatically forwarded to
the interpretation method.
interpret m as MoveForward;

Now we can draw the squares, move without drawing, we can turn and we can
do the branching so lets put it all together. To draw a branch of the Pythagoras
tree we need to a) start the branch, a) turn left, a) move without drawing by
half of the size of the other branch than we are drawing, a) draw the square and
a) end the branch. Likewise with the right branch.

set symbols axiom = S(1) // base
// left branch

[+ m(1 * sin(deg2rad(alpha)) / 2) S(1 * cos(deg2rad(alpha)))]
// right branch

[- m(1 * cos(deg2rad(alpha)) / 2) S(1 * sin(deg2rad(alpha)))];

Figure C.4 shows result of putting everything together along with the result.

lsystem PythagorasTree extends Branches{
let alpha = 30;
let beta = 90 - alpha;

set symbols axiom = S(1)
[+ m(1 * sin(deg2rad(alpha)) / 2)

S(1 * cos(deg2rad(alpha)))]
[- m(1 * cos(deg2rad(alpha)) / 2)

S(1 * sin(deg2rad(alpha)))];

set scale = 100;
set initialAngle = 90;
set lineCap = none;

interpret S(x) as DrawForward(x, x);
interpret m as MoveForward;
interpret + as TurnLeft(alpha);
interpret - as TurnLeft(-beta);

}
process PythagorasTree with SvgRenderer;

Figure C.4: Branching of the Pythagoras thee

This was the hard part. Now L-systems will do the hard work for us. We
need to apply the creation of new branches to again and again.

Because we need to rewrite only the last level of branches we will define
a new symbol X for already rewritten squares. We can add it to the existing

106

interpretation rule.
interpret S X (size) as DrawForward(size, size);

Now for the rewrite rule. All we need to do is to copy the axiom as the rewrite
rule and use the parameter of rewritten symbol as the base size.
rewrite S(x) to X(x)

[+ m(x * sin(deg2rad(alpha)) / 2) S(x * cos(deg2rad(alpha)))]
[- m(x * cos(deg2rad(alpha)) / 2) S(x * sin(deg2rad(alpha)))];

To simplify the rewrite rule we can define local variables.
rewrite S(x)

with a = x * sin(deg2rad(alpha)), b = x * cos(deg2rad(alpha))
to X(x) [+ m(a / 2) S(b)] [- m(b / 2) S(a)];

To rewrite the L-system we need to set the number of iterations. We will use
lower number like 2 to see if it is working.
set iterations = 2;

Voilà, the Pythagoras tree is growing.

lsystem PythagorasTree extends Branches{
let alpha = 30;
let beta = 90 - alpha;

set symbols axiom = S(1);

set scale = 100;
set initialAngle = 90;
set lineCap = none;
set iterations = 2;

interpret S X(x) as DrawForward(x,x);
interpret m as MoveForward;
interpret + as TurnLeft(alpha);
interpret - as TurnLeft(-beta);

rewrite S(x)
with a = x*sin(deg2rad(alpha)),

b = x*cos(deg2rad(alpha))
to X(x) [+ m(a / 2) S(b)]

[- m(b / 2) S(a)];
}
process PythagorasTree with SvgRenderer;

Figure C.5: Growing Pythagoras tree

We can even render it into 3D with minimal effort, just process it with the
ThreeJsRenderer (and set little more iterations and green color), see Figure C.6.

process PythagorasTree with ThreeJsRenderer
set initialColor = #00AA00
set iterations = 10;

107

If we want to generate many Pythagoras trees with different angles we can
add a parameter to the L-system. This parameter will be used as the α angle.
Then we just remove the local variable.
lsystem PythagorasTree(alpha = 30) extends Branches{

To process more L-systems at once with different parameters we can add more
process statements.
process PythagorasTree(30) with SvgRenderer;
process PythagorasTree(35) with SvgRenderer;
process PythagorasTree(40) with SvgRenderer;
process PythagorasTree(45) with SvgRenderer;

Final L-system is in Source code C.1 and its results are in Figure C.7
lsystem PythagorasTree(alpha = 30) extends Branches{

let beta = 90 - alpha;
set symbols axiom = S(1);
set scale = 100;
set initialAngle = 90;
set lineCap = none;
set iterations = 10;
interpret S X(x) as DrawForward(x,x);
interpret m as MoveForward;
interpret + as TurnLeft(alpha);
interpret - as TurnLeft(-beta);
rewrite S(x)

with a = x*sin(deg2rad(alpha)), b = x*cos(deg2rad(alpha))
to X(x) [+ m(a / 2) S(b)] [- m(b / 2) S(a)];

}
process PythagorasTree(30) with SvgRenderer;
process PythagorasTree(35) with SvgRenderer;
process PythagorasTree(40) with SvgRenderer;
process PythagorasTree(45) with SvgRenderer;

Source code C.1: Final L-system of the Pythagoras tree

108

Figure C.6: Pythagoras tree rendered in 3D

(a) α = 30 (b) α = 35

(c) α = 40 (d) α = 45

Figure C.7: Results of finished L-system of the Pythagoras tree

109

110

D. Component implementation
and usage
In this appendix is explained how to implement a component from scratch and
use it together with other components in a custom component graph. At the end
of this chapter is shown how to document created component correctly.

D.1 Component implementation
For purpose of this example is implemented a component for filtering L-system
symbols. In the first part is implemented static (non-configurable) filtering of
symbols. Then the component is extended to allow configurable filtering and to
check the parameters of passed symbols.

D.1.1 Static filtering
The component is intended to be between the iterator and the interpreter com-
ponents (see predefined process configurations in appendix I.4). If we look in
the section Connectable properties in the documentation of the MemoryBuffered-
Iterator we can see that the OutputProcessor connectable property accepts the
ISymbolProvider type. We just start with an empty class implementing that
interface.
public class SymbolFilter : ISymbolProcessor {

// IComponent members
public IMessageLogger Logger { set { throw new NotImplementedException(); } }
public void Initialize(ProcessContext context) {

throw new NotImplementedException();
}
public void Cleanup() {

throw new NotImplementedException();
}
// IProcessComponent members
public bool RequiresMeasure { get { throw new NotImplementedException(); } }
public void BeginProcessing(bool measuring) {

throw new NotImplementedException();
}
public void EndProcessing() {

throw new NotImplementedException();
}
// ISymbolProcessor members
public void ProcessSymbol(Symbol<IValue> symbol) {

throw new NotImplementedException();
}

}

The ISymbolProcessor interface is implementing other three interfaces, the
IComponent interface which is base interface for all components and gives us
members Logger, Initialize and Cleanup.

The Logger property is for logging of errors and messages, we can just auto-
implement it.

public IMessageLogger Logger { get; set; }

111

The Initialize method is for first-time initialization of the component and we
can leave it empty. The Cleanup method is for setting component to the initial
state (prepared for processing), we will do any cleaning there but we will leave it
empty for now.

public void Cleanup() { }

Next block of members is inherited from the IProcessComponent interface
which allows repetitive processing within processing of the L-system.

The RequiresMeasure property is used for indicating whether component needs
the measure pass (see section 2.2.6) which we do not, we can return false.

public bool RequiresMeasure { get { return false; } }

The BeginProcessing and EndProcessing methods are for signaling individual
process passes. Within them we must call our output processor but we don’t have
one yet so lets define it. The output processor will have ISymbolProcessor type
to be possible to connect the same components as was connected to the original
iterator component (to which we will be connected).

[UserConnectable]
public ISymbolProcessor Output { get; set; }

Now we can implement the BeginProcessing and EndProcessing methods
properly by calling the output processor.

public void BeginProcessing(bool measuring) {
Output.BeginProcessing(measuring);

}

public void EndProcessing() {
Output.EndProcessing();

}

The last unimplemented method in our component is the ProcessSymbol me-
thod. This method is called only between the BeginProcessing and EndProcessing
methods. Lets implement simple filtering based on the case of the first letter of
passing symbols. We will send to output only symbols with lower-case first letter.

public void ProcessSymbol(Symbol<IValue> symbol) {
if (char.IsLower(symbol.Name[0])) {

Output.ProcessSymbol(symbol);
}

}

So if we put everything together we will get something similar to Source
code D.1;
public class SymbolFilter : ISymbolProcessor {

[UserConnectable]
public ISymbolProcessor Output { get; set; }

public IMessageLogger Logger { get; set; }
public void Initialize(ProcessContext context) { }
public void Cleanup() { }

public bool RequiresMeasure { get { return false; } }
public void BeginProcessing(bool measuring) {

Output.BeginProcessing(measuring);
}
public void EndProcessing() {

Output.EndProcessing();
}

112

public void ProcessSymbol(Symbol<IValue> symbol) {
if (char.IsLower(symbol.Name[0])) {

Output.ProcessSymbol(symbol);
}

}
}

Source code D.1: Filter component with static filtering

Creation of process configuration

And that’s is. For testing the the functionality we need to plug the filter compo-
nent to some process configuration. We will do a very simple process configuration
for testing purposes (Fig. D.1). The Iterator component have no rewriter com-
ponent attached to it because we do not need to iterate (number of iterations is
by default 0)

..Axiom provider. Iterator. Filter. Symbol printer

Figure D.1: Testing process configuration

Processing of Source code D.2 resulted to the expected output: a cd g n
oP. Before running the processing make sure that our filter component is loaded
to the component resolver together with other components from the standard
library (see section 3.5).

configuration FilterTester {
component AxiomProvider typeof AxiomProvider;
component Iterator typeof MemoryBufferedIterator;

.. component Filter typeof SymbolFilter;
component SymbolsPrinter typeof SymbolsSaver;

connect AxiomProvider to Iterator.AxiomProvider;
.. connect Filter to Iterator.OutputProcessor;
.. connect SymbolProcessor to Filter.Output;
}

lsystem TestLsystem {
set symbols axiom = a B cd Ef g H I JK Lm n oP;

}

process TestLsystem with ..FilterTester;

Source code D.2: L-system code for testing the filter component

D.1.2 Configurable filtering
To allow the user to chose what symbols are filtered we can use the settable
symbol property. Symbols set to this property will be ignored.

The HashSet<string> will be used for effective storing and queering for ig-
nored symbols.

113

private HashSet<string> ignoredSymbols = new HashSet<string>();

Then we will define the symbol property for setting ignored symbols. In the
setter are all given symbols saved to the HashSet.

[AccessName("ignore")]
[UserSettableSybols]
public ImmutableList<Symbol<IValue>> Ignore {

set {
ignoredSymbols.Clear();
foreach (var sym in value) {

ignoredSymbols.Add(sym.Name);
}

}
}

The component must be reusable so we need to clean ignored symbols after
each use. For this is the Clear method that was mentioned earlier.
public void Cleanup() {

ignoredSymbols.Clear();
}

Now we can alter the ProcessSymbol method to filter symbols from the ig-
noredSymbols field.

public void ProcessSymbol(Symbol<IValue> symbol) {
if (!ignoredSymbols.Contains(symbol.Name)) {

Output.ProcessSymbol(symbol);
}

}

The complete source code of the filter component is in Source code D.3;
public class SymbolFilter : ISymbolProcessor {

private HashSet<string> ignoredSymbols = new HashSet<string>();

[AccessName("ignore")]
[UserSettableSybols]
public ImmutableList<Symbol<IValue>> Ignore {

set {
ignoredSymbols.Clear();
foreach (var sym in value) {

ignoredSymbols.Add(sym.Name);
}

}
}
[UserConnectable]
public ISymbolProcessor Output { get; set; }

public IMessageLogger Logger { get; set; }
public void Initialize(ProcessContext context) { }
public void Cleanup() {

ignoredSymbols.Clear();
}

public bool RequiresMeasure { get { return false; } }
public void BeginProcessing(bool measuring) {

Output.BeginProcessing(measuring);
}
public void EndProcessing() {

Output.EndProcessing();
}

public void ProcessSymbol(Symbol<IValue> symbol) {
if (!ignoredSymbols.Contains(symbol.Name)) {

Output.ProcessSymbol(symbol);
}

}

114

}

Source code D.3: Filter component with static filtering

To test new filer component we can use the same process configuration as in
the previous part (Source code D.2). The result from Source code D.4 is A B C
A B C.
lsystem TestLsystem {

set symbols axiom = A + B - C X X Y A + B - C;
.. set symbols ignore = X Y + -;
}
process TestLsystem with FilterTester;

Source code D.4: L-system code for testing improved filter component

D.1.3 Logging of messages
To further improve the filter component and to show how logging is done we will
do a check of parameters of passed symbols. If they will contain any strange
values like NaN or infinity we will report it.

The logic will be placed to the ProcessSymbol method. To log message we
can use the Logger property of our component which was discussed earlier. For
arguments with the value equal to infinity we will log a warning and for NaN
values we will log an error. Note that the error will not abort the evaluation but
at the end of processing the results will not be shown to the user. To aborting
the evaluation can be thrown the ComponentException.

public void ProcessSymbol(Symbol<IValue> symbol) {
if (ignoredSymbols.Contains(symbol.Name)) {

return; // symbol is ignored
}
foreach (var arg in symbol.Arguments) {

if (!arg.IsConstant) { continue; /* ignore non−constant arguments */ }
var c = (Constant)arg;
if (c.IsNaN) {

Logger.LogMessage("InvalidSymbolParameter", MessageType.Error,
symbol.AstNode.TryGetPosition(),
string.Format("Symbol `{0}` have invalid parameter value `{1}`.",

symbol.Name, c));
}
else if (c.IsInfinity) {

Logger.LogMessage("StrangeSymbolParameter", MessageType.Warning,
symbol.AstNode.TryGetPosition(),
string.Format("Symbol `{0}` have strange parameter value `{1}`.",

symbol.Name, c));
}

}
Output.ProcessSymbol(symbol);

}

To try newly implemented functionality we will, again, use the FilterTester
process configuration. Figure D.2 shows the result of processing Source code D.5.
Notice the correct positions of the messages (right part of the table in Figure D.2)
achieved by the symbol.AstNode.TryGetPosition() call.

115

lsystem TestLsystem {
set symbols axiom = A I(infinity - infinity) B(25)

X(1/0) A(NaN) Y(25, infinity);
set symbols ignore = A;

}
process TestLsystem with FilterTester;

Source code D.5: L-system code for testing improved filter component

Figure D.2: The result of processing

D.1.4 Usage in real process configuration
New we can use the filter component in more complex process configuration.
We will alter actual SymbolPrinter process configuration (see appendix I.4.1) by
extending it with our filter component as shows Figure D.3.

..Iterator.

Axiom provider

.

Random generator provider

.Rewriter . Symbol filter. Symbol printer. output

Figure D.3: Extended SymbolPrinter process configuration with the filter com-
ponent

Processing of Source code D.6 will produce following output: F(2) F(4)
F(256) F(Infinity) along with warning about the parameter of the symbol F.

116

configuration FilteredSymbolPrinter {
component AxiomProvider typeof AxiomProvider;
component RandGenProvider typeof RandomGeneratorProvider;

.. component Filter typeof SymbolFilter;

container Rewriter typeof IRewriter default SymbolRewriter;
container Iterator typeof IIterator

default MemoryBufferedIterator;
container SymbolProcessor typeof ISymbolProcessor

default SymbolsSaver;

connect RandGenProvider to Iterator.RandomGeneratorProvider;
connect AxiomProvider to Iterator.AxiomProvider;
connect Iterator to Rewriter.SymbolProvider;
connect Rewriter to Iterator.SymbolProvider;

.. connect Filter to Iterator.OutputProcessor;

.. connect SymbolProcessor to Filter.Output;
}

lsystem TestLsystem {
set symbols axiom = X(2);
set symbols ignore = X;
set iterations = 4;
rewrite X(n) to F(n) X((n ^ n));

}

process TestLsystem with FilteredSymbolPrinter;

Source code D.6: Test of extended SymbolPrinter process configuration with
created filter component

D.2 Component documentation
The documentation of components is described in section 3.4.1. Source code D.7
shows the created filter component with documented members. Rest of the class
is omitted. The result of generated documentation can be found in appendix J
(SymbolFilter component).

117

/// <summary>
/// Filters symbol stream.
/// </summary>
/// <name>Symbol fileter</name>
/// <group>Plugin</group>
public class SymbolFilter : ISymbolProcessor {

private HashSet<string> ignoredSymbols = new HashSet<string>();

/// <summary>
/// List of ignored symbols.
/// </summary>
[AccessName("ignore")]
[UserSettableSybols]
public ImmutableList<Symbol<IValue>> Ignore {

set {
ignoredSymbols.Clear();
foreach (var sym in value) {

ignoredSymbols.Add(sym.Name);
}

}
}

/// <summary>
/// Components to which filtered symbols are sent.
/// </summary>
[UserConnectable]
public ISymbolProcessor Output { get; set; }

...
}

Source code D.7: Symbol filter component with documented members

118

E. Usage of L-system processing
library
The web user interface serves as an example of the usage of the L-system process-
ing library however it is relatively complicated (it uses the IoC container). This
appendix will show how to process a simple L-system from the string.

We have following L-system definition in the string which we want to evaluate.

string sourceCode = string.Join("\n",
"lsystem Fibonacci {",
" set iterations = 6;",
" set interpretEveryIteration = true;",
" set symbols axiom = A(0) B(1);",
" rewrite A(a) { B(b) } to A(b);",
" rewrite { A(a) } B(b) to B(a + b);",
"}",
"process all with SymbolPrinter;");

First we need to load all components, functions, operators and other things
from the Malsys project. If we did not load them we could not use any operators,
functions or components. The class MalsysLoader will load everything for us,
otherwise would have to load all ”stuff” separately.

var logger = new MessageLogger();

var knownStuffProvider = new KnownConstOpProvider();
IExpressionEvaluatorContext evalCtxt = new ExpressionEvaluatorContext();
var componentResolver = new ComponentResolver();

var loader = new MalsysLoader();
loader.LoadMalsysStuffFromAssembly(Assembly.GetAssembly(typeof(MalsysLoader)),

knownStuffProvider, knownStuffProvider, ref evalCtxt, componentResolver, logger);

if (logger.ErrorOccurred) {
throw new Exception("Failed to register Malsys stuff. "

+ logger.AllMessagesToFullString());
}

After loading all standard things we can load some additions or plugins. To
demonstrate it we will add a new operator @ which will take two constants and
add them (like the + operator). To reflect this in our L-system we will also change
the replacement of the second rewrite rule to: B(a @ b).

knownStuffProvider.AddOperator(new OperatorCore("@", 300, 320,
ExpressionValueTypeFlags.Constant, ExpressionValueTypeFlags.Constant,
(l, r) => ((Constant)l + (Constant)r).ToConst()));

Now we can instantiate the main class for L-system processing, the Process-
Manager. It will need instances of compiler and evaluator containers which will
be also created.
var compiler = new CompilersContainer(knownStuffProvider, knownStuffProvider);
var evaluator = new EvaluatorsContainer(evalCtxt);
var processMgr = new ProcessManager(compiler, evaluator, componentResolver);

Evaluating of the L-system input is just one lie of code.

119

var evaledInput = processMgr.CompileAndEvaluateInput(sourceCode, "testInput", logger);
if (logger.ErrorOccurred) {

throw new Exception("Failed to evaluate input."+logger.AllMessagesToFullString());
}

Before we can process it we must join it with the standard library to be able
to use predefined process configurations and other useful definitions. The source
code of the standard library is stored as an resource in the Malsys project. First,
we need to read it.
string stdLibResName = ResourcesHelper.StdLibResourceName;
string stdlibSource;
using (Stream stream = new ResourcesReader().GetResourceStream(stdLibResName)) {

using (TextReader reader = new StreamReader(stream)) {
stdlibSource = reader.ReadToEnd();

}
}

Then we will compile it in the same way as the L-system input.

var stdLib = processMgr.CompileAndEvaluateInput(stdlibSource, "stdLib", logger);
if (logger.ErrorOccurred) {

throw new Exception("Failed to build std lib. "+logger.AllMessagesToFullString());
}

Now we must join our input and the standard library together. It is important
to add our input to the standard library, not in the opposite order.

evaledInput = stdLib.JoinWith(evaledInput);

Processing of the L-systems needs an output provider. The web user interface
uses the FileOutputProvider class as an output provider. It saves the outputs as
files to the file system. For our purposes is better to use the InMemoryOutput-
Provider class which keeps the outputs in the operating memory.

var outProvider = new InMemoryOutputProvider();
processMgr.ProcessInput(evaledInput, outProvider, logger, new TimeSpan(0, 0, 5));
if (logger.ErrorOccurred) {

throw new Exception("Failed to process input. "+logger.AllMessagesToFullString());
}

And that’s it. Now we can read all outputs from output provider. We will
print them to the system console.

var encoding = new UTF8Encoding();
var outputs = outProvider.GetOutputs().Select(x => encoding.GetString(x.OutputData));
foreach (var o in outputs) {

Console.WriteLine(o);
}

The output is in Source code E.1. The complete source code is in Source
code E.2.

Source code E.1: Symbol filter component with documented members
A(0) B(1)
A(1) B(1)
A(1) B(2)
A(2) B(3)
A(3) B(5)
A(5) B(8)
A(8) B(13)

120

Did you noticed that all error reporting is done by the message logger? There
is no need to catch exceptions at all. Only mistakes and bugs in the library will
trow exceptions.

Complete source code
string sourceCode = string.Join("\n",

"lsystem Fibonacci {",
" set iterations = 6;",
" set interpretEveryIteration = true;",
" set symbols axiom = A(0) B(1);",
" rewrite A(a) { B(b) } to A(b);",
" rewrite { A(a) } B(b) to B(a @ b);",
"}",
"process all with SymbolPrinter;");

var logger = new MessageLogger();
var knownStuffProvider = new KnownConstOpProvider();
IExpressionEvaluatorContext evalCtxt = new ExpressionEvaluatorContext();
var componentResolver = new ComponentResolver();

var loader = new MalsysLoader();
loader.LoadMalsysStuffFromAssembly(Assembly.GetAssembly(typeof(MalsysLoader)),

knownStuffProvider, knownStuffProvider, ref evalCtxt, componentResolver, logger);

if (logger.ErrorOccurred) {
throw new Exception("Failed to register Malsys stuff. "

+ logger.AllMessagesToFullString());
}

knownStuffProvider.AddOperator(new OperatorCore("@", 300, 320,
ExpressionValueTypeFlags.Constant, ExpressionValueTypeFlags.Constant,
(l, r) => ((Constant)l + (Constant)r).ToConst()));

var compiler = new CompilersContainer(knownStuffProvider, knownStuffProvider);
var evaluator = new EvaluatorsContainer(evalCtxt);
var processMgr = new ProcessManager(compiler, evaluator, componentResolver);

var evaledInput = processMgr.CompileAndEvaluateInput(sourceCode, "testInput", logger);

if (logger.ErrorOccurred) {
throw new Exception("Failed to evaluate input."+logger.AllMessagesToFullString());

}

string stdLibResName = ResourcesHelper.StdLibResourceName;
string stdlibSource;
using (Stream stream = new ResourcesReader().GetResourceStream(stdLibResName)) {

using (TextReader reader = new StreamReader(stream)) {
stdlibSource = reader.ReadToEnd();

}
}

var stdLib = processMgr.CompileAndEvaluateInput(stdlibSource, "stdLib", logger);
if (logger.ErrorOccurred) {

throw new Exception("Failed to build std lib."+logger.AllMessagesToFullString());
}

evaledInput = stdLib.JoinWith(evaledInput);

var outProvider = new InMemoryOutputProvider();

processMgr.ProcessInput(evaledInput, outProvider, logger, new TimeSpan(0, 0, 5));

if (logger.ErrorOccurred) {
throw new Exception("Failed to process input. "+logger.AllMessagesToFullString());

}

var encoding = new UTF8Encoding();
var outputs = outProvider.GetOutputs().Select(x => encoding.GetString(x.OutputData));

121

foreach (var o in outputs) {
Console.WriteLine(o);

}

Source code E.2: Symbol filter component with documented members

122

F. Publish on the server
In this appendix are step-by-step instructions how to publish the web site on
the Windows Server 2008 R2 Standard x64 SP1. At the end of this chapter is
mentioned the migration of the server.

F.1 Creation of publish package
F.1.1 Settings
The web should be configured before the first deploy. The configuration settings
are in the Web.config file and they are explained in section 3.9.2.

The most settings can be left as default but at leas a valid keys for the Re-
Captcha should be set [G.13]. Also correct ID for Google Analytics [G.14] can be
set in the Layout view (/Views/Shared/_Layout.cshtml).

F.1.2 Compilation
Creation of the publish package is simple. Open the solution in the Visual Studio
2010 and in the Solution explorer right click on the Malsys.Web project and chose
Publish from the context menu (Fig. F.1a). Then appears a popup dialog with
publish settings. In this tutorial we will use publishing to the file system as you
can see in Figure F.1b. Then click on the Publish button and the publish package
will be created in selected directory. Do not forget to set release configuration in
the Visual Studio 2010 before publishing.

(a) (b)

Figure F.1: Creation of publish the package in the Visual Studio 2010

F.2 Configuration of the server
Following steps expects fresh installation of the Windows Server 2008 R2 Stan-
dard x64 SP1. Any step can be skipped if any described component is already

123

installed.

F.2.1 Internet Information Services (IIS)
To run the web we will need the IIS on the server.

To install it, run the Server Manager and in Roles summary click on the
Add Roles button. Skip the Before You Begin page if it appears, select the Web
Server (IIS) from the list and click the Next button. On Role Services screen select
ASP.NET and HTTP Redirection and confirm installation of any dependencies
as well. Then click the Next button and finish installation.

F.2.2 Web platform installer
For installation of needed programs we will use the Web platform installer.

Download the Web Platform Installer from http://www.microsoft.com/
web/downloads/platform.aspx and run it. In the Web Platform Installer switch
to the Products tab and mark to install following products (Figure F.2):

• Microsoft .NET Framework 4
• SQL Server Express 2008 R2
• ASP.NET MVC 3 (Visual Studio 2010)
• ASP.NET WebPages
• ASP.NET MVC Tools Update
• ASP.NET Web Pages Language Packs Language Packs
• URL Rewrite 2.0
• IIS: Logging Tools

Figure F.2: Marked products to install in the Web Platform Installer

124

http://www.microsoft.com/web/downloads/platform.aspx

http://www.microsoft.com/web/downloads/platform.aspx

F.2.3 F#
F# Redistributable Package

To load the F# 4.0 libraries properly the F# 2.0 Runtime SP1 must be installed.
The redistributable package can be downloaded from http://msdn.microsoft.
com/en-us/library/ee829875.aspx.

F# PowerPack

Standard F# distribution do not contain tolls like FsLex and FsYacc which are
used in this project. They are in downloadable package called the F# PowerPack
which can be downloaded from http://fsharppowerpack.codeplex.com/.

F.3 Deploy of the application
In this moment all needed software to run the web is installed on the server.

F.3.1 Creation of new Application pool
For running the web we will create a new Application pool (App pool) because
default App pools are not configured as we need.

Open the Internet Information Services (IIS) Manager1, in the left menu open
tree node with the name of your server, right click on the Application Pools and
choose the Add Application Pool from the context menu. Enter the name (Malsys
in our case) of new App pool and as the .NET Framework version chose .NET
Framework v4.0 (Fig. F.3a) and confirm the dialog.

Then select Application Pools node (left menu), right click on newly created
App pool and chose Advanced settings. In the Advanced Settings dialog box find
the category called Process Model. The first row in the category will be the
Identity row. Click on the Identity row and then click on the small button that
shows on the right-hand side of the value cell. A dialog box called Application
Pool Identity will popup. Within that dialog box make sure the first radio button
titled Built-in Account is selected. In the dropdown box below the radio button
choose Network Service for the identity (Fig. F.3b). Then confirm all dialogs
with Ok buttons.

F.3.2 Creation of new App Pool
In the Internet Information Services (IIS) Manager click on Sites node on the
left menu. If your installation of the IIS is fresh you can delete the default site
called Default Site. Then right click Sites node and chose Add Web Site.

In the dialog, enter the Site name and chose newly created App pool from
previous step. Then enter physical path of the web root (C:\inetpub\WwwMalsys
in our case). Then you can configure Binding. If the server will host only this
web site we can leave default settings (Fig. F.4).

1The Internet Information Services (IIS) Manager can be easily found typing the ”IIS” in
the start menu search bar.

125

http://msdn.microsoft.com/en-us/library/ee829875.aspx

http://msdn.microsoft.com/en-us/library/ee829875.aspx

http://fsharppowerpack.codeplex.com/

(a) New app pool dialog (b) App pool settings dialog

Figure F.3: App pool settings dialogs

Figure F.4: Filled Add Web Site dialog

F.3.3 Copy files
Copy all files from the deployment package (created in section F.1) to the web
site root. Database file is not included in deployment package to avoid rewriting
”life” version while updating the web site. Empty database file is located in
the App_Data.empty.zip archive in the App_Data directory of the Malsys.Web
project. Extract both files from the archive to the App_Data directory of the

126

new web.
To allow access of database server to the database files set access to the

App_Data to full control for users NETWORK SERVICE and IIS_IUSRS as
you can see in Figure F.5.

Figure F.5: Rights of the App_Data directory

F.4 First run
The web has detection for correctness of basic settings. One of them are working
directories for processing and gallery configurable in the Web.config (see sec-
tion 3.9.2). They must be created and accessible for reading and writing for the
IIS_IUSRS user in order to run the web. The web application will try to create
them but if it fail an exception is thrown. The same applies for directory for
logging of errors which is also settable in the Web.config.

The database is also checked. The existence of following user roles is checked:
administrator, trusted, viewstats and viewfeedbacks. Missing ones are recreated.

If there is no user in the DB a new user with name Administrator is created
and automatically added to the administrator role. This user have password set
to malsys. This is important because without administrator is not possible to
add any users to user roles, thus it is not possible to promote any user to new
administrator. The password of this default user should be changed immediately
after deploying.

F.5 Server migration
The migration of the server is very simple. If the new server is prepared all what
needs to be done is transfer of the database. Since DB is stored in single .mdf
file it can be just copied and that’s it.

Each image in the gallery will generate automatically on the first request for
it.

127

128

G. Third-party libraries and
services
G.1 F# PowerPack
http://fsharppowerpack.codeplex.com/

The F# PowerPack is a collection of libraries and tools for use with the F#
programming language provided by the F# team at Microsoft. The PowerPack
includes F# versions of lexer and parser generation tools (FsLex and FsYacc),
along with the MSBuild tasks to incorporate them in the build process.

The FsLex and FsYacc are used for parsing of input (see section 3.2).

G.2 HTML5 boilerplate
http://html5boilerplate.com/

HTML5 Boilerplate is the professional frontend developers’s base HTML/CSS/JS
template for a fast, robust and future-safe site.

It is used as the base of the HTML and CSS in the web user interface.

G.3 Three.js
http://github.com/mrdoob/three.js/

Three.js is lightweight JavaScript 3D library (3D engine) for rendering 3D scenes
directly in web browser.

It is used to render 3D models produced by the ThreeJsSceneRenderer3D
component.

G.4 jQuery
http://jquery.com/

jQuery is a fast and concise JavaScript Library that simplifies HTML document
traversing, event handling, animating, and Ajax interactions for rapid web devel-
opment.

All custom JavaScript win web user interface was written with the help of
jQuery.

G.5 Modernizr
http://modernizr.com/

Modernizr is an open-source JavaScript library that helps to build the next gen-
eration of HTML5 and CSS3-powered websites.

Cool HTML5 and CSS3 features can be used in web user interface thanks to
Modernizr.

129

http://fsharppowerpack.codeplex.com/

http://html5boilerplate.com/

http://github.com/mrdoob/three.js/

http://jquery.com/

http://modernizr.com/

G.6 Code Contracts
http://research.microsoft.com/en-us/projects/contracts/

Code Contracts provide a language-agnostic way to express coding assumptions
in .NET programs. The contracts take the form of preconditions, postconditions,
and object invariants. Contracts act as checked documentation of your exter-
nal and internal APIs. The contracts are used to improve testing via runtime
checking, enable static contract verification, and documentation generation.

The Code Contracts are used in many methods across all projects. Contract
checking is turned on while the solution is built on the debug settings but because
of performance reasons they are turned off in the release.

In Source code G.1 are defined four preconditions checking validity of argu-
ments and two postconditions ensuring output format. From the contracts is
clear that the method must be supplied with at least 3 points in list and the
number of returned indices will be divisible by 3 (without reminder). It makes
sense because every 3 indices specifies a triangle.

public List<int> Triangularize(IList<Point3D> points,
Polygon3DTriangulerParameters prms) {

Contract.Requires<ArgumentNullException>(points != null);
Contract.Requires<ArgumentNullException>(prms != null);
Contract.Requires<ArgumentException>(points.Count >= 3);
Contract.Requires<ArgumentException>(

prms.TriangleEvalDelegate != null);

Contract.Ensures(Contract.Result<List<int>>() != null);
Contract.Ensures(Contract.Result<List<int>>().Count % 3 == 0);
...

}

Source code G.1: Example of code contracts in the Triangularize method of the
Polygon3DTrianguler class.

G.7 Autofac IoC container
http://code.google.com/p/autofac/

Autofac is an IoC container for Microsoft .NET. It manages the dependencies
between classes so that applications stay easy to change as they grow in size and
complexity. This is achieved by treating regular .NET classes as components.

The Autofac have the ASP.NETMVC 3 integration which extends the Autofac
by helper methods for simple registration of controllers.

G.8 MvcContrib
http://mvccontrib.codeplex.com/

MvcContrib project adds functionality and ease-of-use to Microsoft’s ASP.NET
MVC Framework.

The part of the MvcContrib is T4MVC which is a T4 template for ASP.NET
MVC apps that creates strongly typed helpers that eliminate the use of literal
strings when referring the controllers, actions and views (see section 3.9.4).

130

http://research.microsoft.com/en-us/projects/contracts/

http://code.google.com/p/autofac/

http://mvccontrib.codeplex.com/

The MvcContrib contains many useful UI components like the Grid which is
used for displaying data as table (Source code G.2).

@Html.Grid(Model).Columns(col => {
col.For(x => x.RoleId)

.Named("Id")

.HeaderAttributes(style => "width: 40px;")

.Attributes(@class => "center");
col.For(x => x.Name);
col.For(x => Html.ActionLink("Edit", MVC.Administration.Roles.Edit(x.RoleId)))

.Attributes(@class => "center")

.HeaderAttributes(style => "width: 50px;")

.Encode(false);
}).Attributes(@class => "w100")

Source code G.2: Usage of the Grid component to show list of user roles

G.9 Elmah
http://code.google.com/p/elmah/

ELMAH (Error Logging Modules and Handlers) is an application-wide error log-
ging facility that is completely pluggable. It can be dynamically added to a
running ASP.NET web application, or even all ASP.NET web applications on a
machine, without any need for re-compilation or re-deployment. Once ELMAH
has been dropped into a running web application and configured appropriately it
is possible to log nearly all unhandled exceptions.

For usage of ELMAH in the web project see section 3.9.7

G.10 LESS css
http://lesscss.org/

LESS is dynamic stylesheet language. It extends CSS with dynamic behavior
such as variables, mixins, operations and functions. LESS can run on both the
client-side and server-side.

LESS was used for definition of stylesheets in the web (see section 3.9.8).

G.10.1 .LESS
http://www.dotlesscss.org/

.LESS (pronounced dot-less) is a .NET port of the LESS JavaScript libary. It
allows implicit compilation of LESS files to CSS.

G.11 Data Annotations Extensions
http://dataannotationsextensions.org/

Data Annotations Extensions provides common validation attributes which ex-
tend the built-in ASP.NET DataAnnotations. The core library provides server-
side validation attributes that can be used in any .NET 4.0 project.

For the the usage of the annotations see section 3.9.1.

131

http://code.google.com/p/elmah/

http://lesscss.org/

http://www.dotlesscss.org/

http://dataannotationsextensions.org/

G.12 Yahoo! UI Library
http://yuicompressor.codeplex.com/

Yahoo! UI Library is a .NET port of the Yahoo! UI Library’s YUI Compressor
Java project. The objective of this project is to compress any Javascript and
Cascading Style Sheets to an efficient level that works exactly as the original
source, before it was minified.

The Yahoo! UI Library is used for minimalization of JavaScript files to im-
prove site performace section 3.9.9.

G.13 ReCaptcha
http://recaptcha.net/

reCAPTCHA is a free CAPTCHA1 service that helps to digitize books, newspa-
pers and old time radio shows.

reCAPTCHA is used at user registration and feedback pages to prevent spam-
ming by bots.

G.14 Google Analytics
http://www.google.com/analytics/

Google Analytics (GA) is a free service offered by Google that collects visitors
data and generates detailed statistics about them. The GA can track visitors
from all referrers, including search engines, social networks, etc.

The GA is used for tracking the activity of users in the web user interface.

1A CAPTCHA is a program that can tell whether its user is a human or a computer.

132

http://yuicompressor.codeplex.com/

http://recaptcha.net/

http://www.google.com/analytics/

H. Input syntax reference
This appendix contains formal definition of the designed syntax. The syntax is
described with the regular expressions which are explained in the first section.
The syntax is described from the most general parts to more concrete parts.

H.1 Regular expressions
Table H.1 explains the syntax of the regular expressions used for description of
the input syntax.

Regexp Definition Example
' ' matches the text between

quotes (and nothing else)
'let' matches only string let

[] matches one of any characters
enclosed in brackets

[ab] matches only a or b

[-] matches single character be-
tween two specified characters
(inclusive)

[0-9] matches any digit from 0
to 9

| matches regexp on the right OR
on the left of pipe

'gray'|'grey' matches only
gray or grey

? preceding regexp must match
zero or one times

'colo' 'u'? 'r' matches only
color or colour

+ preceding regexp must match
one or more times

[0-9]+matches any non-negative
integer like 5 or 42

* preceding regexp must match
zero or more times

'b' 'e'* matches b, be or beee

Table H.1: Meaning of syntax of regular expressions

H.2 Tokens
A token is atomic element of grammar. In the token can not be any white-
space character however the white-space characters are often used to separate
individual tokens. Names of the tokens will be upper-case to distinguish them
from the grammar rules.

H.2.1 Identifier

ID = (ALPHA_CHAR | '_') (ALPHA_CHAR | DIGIT | '_')* '\''*

The ID token represents identifier which starts with alphabetic character (let-
ter) or underscore and may also contain digits. At the end can be apostrophes
to allow identifiers such as a' or a''.

133

Note that regular expression is simplified by the ALPHA_CHAR and DIGIT
to avoid using characters groups in unicode. The ALPHA_CHAR matches any
letter and the DIGIT matches any digit character.

H.2.2 Number

NUMBER = [0−9]+ ('.' [0−9]+)? ([eE] ('+'|'−')? [0−9]+)?
| '0'[bB] [01]+
| '0'[oO] [0−7]+
| '0'[xX] ([0−9] | [a−f] | [A−F])+
| '#' ([0−9] | [a−f] | [A−F])+

The NUMBER token represents a number literal. Numbers can be specified in
five formats: floating-point, binary, octal and hexadecimal prefixed 0x or #.

H.2.3 Operator

OPERATOR = (firstOpChar opChar*) | '==' | '/'

firstOpChar = [!$%&\<>@^|~:−] | '?' | '+' | '*'
opChar = firstOpChar | '=' | '/'

The OPERATOR token represents an operator in mathematical expression.

H.3 Input syntax
The syntax is described with regular expressions explained in section H.1. The
regular expressions can contain literals, tokens or other regular expressions. The
input grammar is white-space independent, between any two regular expression
members can be any number of white-space characters.

In each subsection, the first line of formal specification is the regular expression
for described statement. Next lines are describing regular expressions used in the
main definition.

H.3.1 Input

input = inputStatement*

inputStatement = emptyStatement
| constantDef
| functionDef
| lsystemDef
| processStatement
| processConfigDef

The Input rule is the start rule of the input syntax. The Input can contain
constant, function and L-system definitions, process statements and process con-
figuration definitions. Empty statement allows redundant semicolons between
statements.

134

H.3.2 Empty statement

emptyStatement = ';'

Empty statement allows redundant semicolons in syntax.

H.3.3 Constant definition

constantDef = 'let' ID '=' expression ';'

Defines a constant with name represented by ID with value represented by
expression.

H.3.4 Function definition

functionDef = 'fun' ID paramsDefValListParens
'{' constantDef* 'return' expression ';' '}'

Defines a function with name represented by ID, parameters (with optional de-
fault values) paramsDefValListParens, local constants constantDef and return
value expression.

H.3.5 L-system definition

lsystemDef = 'abstract'? 'lsystem' ID paramsDefValListParens?
baseLsystems? '{' lsystemStatement* '}'

baseLsystems = 'extends' baseLsystemsList
baseLsystemsList = ID exprListParens? (',' baseLsystemsList)?
lsystemStatement = emptyStatement

| constantDef
| functionDef
| componentPropertyAssign
| symbolsInterpretationDef
| rewriteRule

Defines an L-system with name represented by ID, optional parameters (with
optional default values) paramsDefValListParens, base L-systems baseLsystems
and L-system statements lsystemStatement. Arguments can be supplied to each
base L-system. The L-system statement can be constant, function and symbols
interpretation definition, component property assign and rewrite rule.

Component property assign

componentPropertyAssign = 'set' ID '=' expression ';'
| 'set' 'symbols' ID '=' symbolExprArgs* ';'

Defines a component property assign of property with name represented by
ID to value represented by expression (value properties) or to list of symbols
symbolExprArgs (symbol properties).

135

Symbols interpretation definition

symbolsInterpretationDef = 'interpret'
symbol+ paramsDefValListParens? 'as' ID exprListParens? ';'

Defines an interpretation method with name represented by ID to symbols
symbol. If parameters paramsDefValListParens are specified values of argu-
ments of interpreted symbols are matched to parameters and they can be used
as variables in the interpretation method arguments exprListParens.

Rewrite rule definition

rewriteRule = 'rewrite' rrPattern rrConsts? rrCondition?
'to' rrReplacement ';'

Defines a rewrite rule for symbol (and its context) specified in rrPattern
to symbols rrReplacement. Optionally there can be specified local constants
rrConsts and condition rrCondition.

Rewrite rule pattern

rrPattern = rrContext? symbolOptParams rrContext?

symbolOptParams = SYMBOL symbol_params?
symbol_params = '(' (ID (',' ID)*)? ')'
rrContext = '{' symbolPptParams* '}'

Defines a pattern of the rewrite rule which defines rewriting of a symbol
represented by symbolOptParams. The first rrContext represents left context
of main symbol symbolOptParams and the second rrContext represents right
context. Main symbol and every symbol in context can have specified parameters
names. Actual arguments of matched symbols will be set to specified parameters.

Rewrite rule constants definition

rrConsts = 'with' rrCostDefsList

rrCostDefsList = ID '=' expression (',' rrCostDefsList)?

Defines local variables in the rewrite rule separated by comma. Syntax is
similar to the constant definition but there is no let keyword at the beginning
and no semicolon at the end.

Rewrite rule condition

rrCondition = 'where' expression

Defines a rewrite rule condition.

136

Rewrite rule replacement

rrReplacements = 'nothing'
| symbolExprArgs* rrWeight? ('or'? 'to' rrReplacements)?

rrWeight = 'weight' expression

Defines one or more replacements for the rewrite rule. Each replacement can
have probability weight.

L-system symbol

symbol = ID | OPERATOR | '[' | ']' | '.'
symbolExprArgs = symbol exprListParens?

H.3.6 Process configuration definition

processConfigDef = 'configuration' ID '{' processConfigStatement* '}'

processConfigStatement = emptyStatement
| procConfComponentDef
| procConfContainerDef
| procConfConnectionDef

Defines a process configuration with name represented by ID with statements
processConfigStatement. Statements can be component, container or connec-
tion definition.

Process configuration component definition

procConfComponentDef = 'component' ID 'typeof' typeId ';'

Defines a component with name represented by ID with type typeId.

Process configuration container definition

procConfContainerDef =
'container' ID 'typeof' typeId 'default' typeId ';'

Defines a container with name represented by ID with type typeId (first) with
default component with type typeId (second).

Process configuration connection definition

procConfConnectionDef = 'virtual'? 'connect' ID 'to' ID '.' ID ';'

Defines a connection of component with name represented by ID (first) to
property with name ID (third) of component with name ID (second).

137

H.3.7 Process statement

processStatement = 'process' name exprListParens?
'with' ID useComponents* ';'

name = 'all' | ID
useComponents = 'use' ID 'as' ID

Defines processing of one or all L-systems represented by name with parame-
ters exprListParens with process configuration ID. At the end or process state-
ment can be specified usage of extra components in containers in configuration.

H.3.8 Mathematical expression

expression = exprMember+

exprMember = NUMBER
| ID
| OPERATOR
| exprIndexer
| exprArray
| exprFunction
| '(' expression ')'

exprIndexer = '[' expression ']'
exprArray = '{' exprList? '}'
exprFunction = ID exprListParens

The expression consists of list of members. The ID token represents a variable.
Meaning of the rest of members are obvious from their names. The grammar of
expression is not strict, correctness of the expression will ensure the compiler.
The parser can not parse expression as tree because the operators are not defined
while parsing.

H.3.9 Common rules
Mathematical expression list

exprList = expression (',' expression)*
exprListParens = '(' exprList? ')'

List of parameters with default values

paramsDefValList = ID ('=' expression)? (',' paramsDefValList)?
paramsDefValListParens = '(' paramsDefValList? ')'

Type identifier

typeId = ID ('.' ID)*

Represents a fully qualified type identifier.

138

I. Standard library source code
The Standard library was created for easier creation of the inputs. It contains
useful constants, L-systems for inheritance and predefined process configurations.
The standard library source code is prepended to all processed inputs in the web
user interface.

The source code is divided into logical sections. Each section contains short
comment and explanation of the source code.

I.1 General Constants
let pi = 3.14159265358979323846;
let π = pi;
let e = 2.7182818284590452354;

I.2 Component specific constants
Constants defined in this section helps to add a semantic meaning to the numeric
values which are used for configuration of the components.

I.2.1 Svg renderer
Following constants represent line cap values of the LineCap property of the
SvgRenderer2D component.
let none = 0;
let square = 1;
let round = 2;

I.2.2 ThreeJs renderer
Following constants represent triangulation strategies which are set to the Poly-
gonTriangulationStrategy property of the ThreeJsSceneRenderer3D component.
let fanFromFirstPoint = 0;
let minAngle = 1;
let maxAngle = 2;
let maxDistance = 3;
let maxDistanceFromNonTriangulated = 4;

I.3 Abstract L-systems
L-systems defined in this section are intended to use as base L-systems for
L-systems defined by the user (for inheritance). They are defined as abstract
to exclude them from processing with the all keyword.

139

I.3.1 Standard L-system 2D
L-system called StdLsystem defines interpretation for usual symbols and correctly
defines branches.
abstract lsystem StdLsystem {

interpret A B C D E F G as DrawForward(8);
interpret a b c d e f g as MoveForward(8);

interpret + as TurnLeft(90);
interpret -(x = 90) as TurnLeft(-x);
interpret | as TurnLeft(180);
interpret / as Roll(180); // switches meaning of + and - symbols

interpret < as StartPolygon;
interpret . as RecordPolygonVertex;
interpret > as EndPolygon;

set symbols startBranchSymbols = [;
set symbols endBranchSymbols =];

interpret [as StartBranch;
interpret] as EndBranch;

}

I.3.2 Standard L-system 3D
L-system called StdLsystem3D defines interpretation for usual symbols and cor-
rectly defines branches. The only difference between the StdLsystem3D and
StdLsystem is in the interpretation of + and - symbols. 2D image must be
rendered in the XY plane, thus + and - symbols must do a pitch but in 3D for
pitch is more intuitive to use ˆ and & symbols.
abstract lsystem StdLsystem3D {

interpret A B C D E F G as DrawForward(8);
interpret a b c d e f g as MoveForward(8);

interpret + as Yaw(90);
interpret -(x = 90) as Yaw(-x);
interpret | as Yaw(180);

interpret ^ as Pitch(90);
interpret &(x = 90) as Pitch(-x);

interpret / as Roll(90);
interpret \(x = 90) as Roll(-x);

interpret < as StartPolygon;
interpret . as RecordPolygonVertex;
interpret > as EndPolygon;

set symbols startBranchSymbols = [;
set symbols endBranchSymbols =];

interpret [as StartBranch;
interpret] as EndBranch;

}

I.3.3 Branches
L-system Branches defines interpretation for branches correctly. To be able to
do context rewriting correctly the Rewriter component must know what symbols
start and end the branches. This should be the same symbol as supplied to
interpreter.

140

abstract lsystem Branches {
set symbols startBranchSymbols = [;
set symbols endBranchSymbols =];

interpret [as StartBranch;
interpret] as EndBranch;

}

I.3.4 Polygons and branches
L-system Polygons defines interpretation for polygons and branches.
abstract lsystem Polygons {

interpret < as StartPolygon;
interpret . as RecordPolygonVertex;
interpret > as EndPolygon;

set symbols startBranchSymbols = [;
set symbols endBranchSymbols =];

interpret [as StartBranch;
interpret] as EndBranch;

}

I.4 Process configurations
I.4.1 Symbol printer
Process configuration called SymbolPrinter prints rewrited symbols as text. It
can be used to familiarize with L-system principles. Advanced users can use is
while debugging some more complex L-systems.
configuration SymbolPrinter {

component AxiomProvider typeof AxiomProvider;
component RandomGeneratorProvider typeof RandomGeneratorProvider;

container Rewriter typeof IRewriter default SymbolRewriter;
container Iterator typeof IIterator default MemoryBufferedIterator;
container SymbolProcessor typeof ISymbolProcessor default SymbolsSaver;

connect RandomGeneratorProvider to Iterator.RandomGeneratorProvider;
connect AxiomProvider to Iterator.AxiomProvider;
connect Iterator to Rewriter.SymbolProvider;
connect Rewriter to Iterator.SymbolProvider;
connect SymbolProcessor to Iterator.OutputProcessor;

}

I.4.2 Svg renderer
Process configuration SvgRenderer interprets symbols with the TurtleInterpreter
component and renders the with the SvgRenderer2D component to the SVG (Scal-
able Vector Graphics). However this process configuration is relatively universal
and it can be used any 2D or 3D renderer component in the Renderer container.
Note that L-system is interpreted in 3D but z-coordinate from data sent to the
SvgRenderer2D are cut off.
configuration SvgRenderer {

component AxiomProvider typeof AxiomProvider;
component RandomGeneratorProvider typeof RandomGeneratorProvider;

141

component LsystemInLsystemProcessor typeof LsystemInLsystemProcessor;

container Rewriter typeof IRewriter default SymbolRewriter;
container Iterator typeof IIterator default MemoryBufferedIterator;
container InterpreterCaller typeof IInterpreterCaller default InterpreterCaller;
container Interpreter typeof IInterpreter default TurtleInterpreter;
container Renderer typeof IRenderer default SvgRenderer2D;

connect RandomGeneratorProvider to Iterator.RandomGeneratorProvider;
connect AxiomProvider to Iterator.AxiomProvider;
connect Iterator to Rewriter.SymbolProvider;
connect Rewriter to Iterator.SymbolProvider;
connect InterpreterCaller to Iterator.OutputProcessor;
connect LsystemInLsystemProcessor to InterpreterCaller.LsystemInLsystemProcessor;
connect Renderer to Interpreter.Renderer;

}

I.4.3 ThreeJs renderer
Process configuration ThreeJsRenderer is very similar to the SvgRenderer. The
only difference is in used renderer component in the Renderer container. This
process configuration uses the ThreeJsSceneRenderer3D to render 3D scene for
the Three.js engine [G.3].
configuration ThreeJsRenderer {

component AxiomProvider typeof AxiomProvider;
component RandomGeneratorProvider typeof RandomGeneratorProvider;
component LsystemInLsystemProcessor typeof LsystemInLsystemProcessor;

container Rewriter typeof IRewriter default SymbolRewriter;
container Iterator typeof IIterator default MemoryBufferedIterator;
container InterpreterCaller typeof IInterpreterCaller default InterpreterCaller;
container Interpreter typeof IInterpreter default TurtleInterpreter;
container Renderer typeof IRenderer default ThreeJsSceneRenderer3D;

connect RandomGeneratorProvider to Iterator.RandomGeneratorProvider;
connect AxiomProvider to Iterator.AxiomProvider;
connect Iterator to Rewriter.SymbolProvider;
connect Rewriter to Iterator.SymbolProvider;
connect InterpreterCaller to Iterator.OutputProcessor;
connect LsystemInLsystemProcessor to InterpreterCaller.LsystemInLsystemProcessor;
connect Renderer to Interpreter.Renderer;

}

I.4.4 Hexagonal ASCII renderer
Process configuration HexAsciiRenderer interpret symbols with special HexaAsci-
iInterpreter which can move forward by fixed steps (not by any distance) and it
can turn only by multiples of sixty degrees thus result will be in hexagonal grid.
The HexaAsciiInterpreter can communicate only with is supposed to communi-
cate with the TextRenderer component which is used to generate ASCII art-style
output.
configuration HexAsciiRenderer {

component AxiomProvider typeof AxiomProvider;
component RandomGeneratorProvider typeof RandomGeneratorProvider;
component LsystemInLsystemProcessor typeof LsystemInLsystemProcessor;

container Rewriter typeof IRewriter default SymbolRewriter;
container Iterator typeof IIterator default MemoryBufferedIterator;
container InterpreterCaller typeof IInterpreterCaller default InterpreterCaller;
container Interpreter typeof IInterpreter default HexaAsciiInterpreter;
container Renderer typeof IRenderer default TextRenderer;

142

connect RandomGeneratorProvider to Iterator.RandomGeneratorProvider;
connect AxiomProvider to Iterator.AxiomProvider;
connect Iterator to Rewriter.SymbolProvider;
connect Rewriter to Iterator.SymbolProvider;
connect InterpreterCaller to Iterator.OutputProcessor;
connect LsystemInLsystemProcessor to InterpreterCaller.LsystemInLsystemProcessor;
connect Renderer to Interpreter.Renderer;

}

I.4.5 Inner L-system process configuration
The InnerLsystemConfig process configuration is used by the ILsystemInLsys-
temProcessor component to interpret symbols as another L-system (2.3.3).

Last connection is virtual because the ILsystemInLsystemProcessor compo-
nent will be artificially added to process configuration by itself (the ILsystemInL-
systemProcessor component).
configuration InnerLsystemConfig {

component Rewriter typeof SymbolRewriter;
component Iterator typeof InnerLsystemIterator;
component InterpreterCaller typeof InterpreterCaller;

connect Iterator to Rewriter.SymbolProvider;
connect Rewriter to Iterator.SymbolProvider;
connect InterpreterCaller to Iterator.OutputProcessor;

virtual connect LsystemInLsystemProcessor
to InterpreterCaller.LsystemInLsystemProcessor;

}

I.4.6 Constant dumper
The ConstantDumper process configuration contains single component, the Con-
stantsDumper which just prints all defined global constants as text. This can be
used to experiment with expressions.

Even though the ConstantsDumper do not need any L-systems to prints con-
stants (L-systems are actually ignored), process system of the library can pro-
cess only L-systems. To over come this restriction with no effort the Constants
L-system is defined to be used in the process statement as follows:
process Constants with ConstantDumper
configuration ConstantDumper {

component Dumper typeof ConstantsDumper;
}

abstract lsystem Constants { }

143

144

J. Components
This appendix contains list of all important1 components with their comprehen-
sive description. In order to save space in the printed version of the thesis the
list of interfaces is available only int the web user interface.

All components are in the main project called Malsys int the namespace Mal-
sys.Processing.Components. If some component is in sub-namespace, then the
path from the main namespace is in the bracket after component type.

All listed components can be accessed in process configurations by type name
or full name (type name with all namespaces). For example component called
Turtle interpreter can be accessed by name TurtleInterpreter or full name
Malsys.Processing.Components.Interpreters.TurtleInterpreter.

J.1 Legend
Explanation of tags which describes special properties of some members.

abstract Components marked as abstract can not be instantiated. They can be
used in the same way as interfaces (only as container type).

run-time only Gettable properties (or callable functions) marked as run-time
only can be get (called) only while L-system is processed (in rewrite rules or
interpretation methods). Especially they can not be get (called) in L-system
let or set statements.

mandatory Value of settable properties (and settable symbol properties) marked
as mandatory must be set in L-system definition. Parameters of interpre-
tation method marked as mandatory must be supplied to interpretation
method.

optional Connectable properties marked as optional may not be connected by
process configuration (by default they must be connected).

allowed multiple More components can be connected to connectable proper-
ties marked as allowed multiple (by default only one component can be
connected).

J.2 Components
J.2.1 2D SVG renderer
Provides commands for rendering 2D image. Result is vector image in SVG
(Scalable Vector Graphics, plain text XML). Result is by default compressed by
GZip (svgz).

Type name SvgRenderer2D (Renderers.SvgRenderer2D)

1Components for debugging are omitted.

145

Assignable to interfaces IComponent, IProcessComponent, IRenderer, IRen-
derer2D

Settable properties of 2D SVG renderer

margin (accepts value or array) – Margin of result image.
Expected value: One number (or array with one number) for all margins,
array of two numbers for vertical and horizontal margins or array of four
numbers as top, right, bottom and left margin respectively.
Default value: 2

canvasOriginSize (accepts array) – When set it overrides measured dimensions
of image and uses given values.
Expected value: Four numbers representing x, y, width and height of canvas.
Default value: none

compressSvg (accepts value) – If set to true result SBG image is compressed
by GZip. GZipped SVG images are standard and all programs supporting
SVG should be able to open it. GZipping SVG significantly reduces its size.
Expected value: true or false
Default value: true

scale (accepts value) – Scale of result image.
Expected value: Positive number.
Default value: 1

lineCap (accepts value) – Cap of each rendered line.
Expected value: 0 for no caps, 1 for square caps, 2 for round caps
Default value: 2 (round caps)

J.2.2 3D renderer base
Provides commands for rendering 3D scene and also some basic functionality
common for all 3D renderers.

Abstract component (can not be instantiated)

Type name BaseRenderer3D (Renderers.BaseRenderer3D)

Derived components ThreeJsSceneRenderer3D

Derived interfaces IComponent, IProcessComponent, IRenderer, IRenderer3D

J.2.3 3D Three.js renderer
Provides commands for rendering 3D scene. Result is JavaScript script defining
3D scene in JavaScript 3D engine Three.js.

Type name ThreeJsSceneRenderer3D (Renderers.ThreeJsSceneRenderer3D)

Base components BaseRenderer3D

146

Assignable to interfaces IComponent, IProcessComponent, IRenderer, IRen-
derer3D

Settable properties of 3D Three.js renderer
smoothShading (accepts value) – If set to true, triangles will be shaded smoothly.

This can improve quality of spheres or cylinders but it has no effect on cubes.
Also it significantly reduces performance of rendering.
Expected value: true or false
Default value: false

polygonTriangulationStrategy (accepts value) – Polygon triangulation strat-
egy.
Expected value: 0 for ”fan from first point”, 1 triangles with minimal angle
are prioritized, 2 triangles with maximal angle are prioritized, 3 triangles
with maximal distance from all other points are prioritized, 4 triangles with
maximal distance from not-yet-triangulated points are prioritized
Default value: 2

cameraPosition (accepts array) – Camera position. If not set it is counted
automatically.
Expected value: Array 3 numbers representing x, y and z coordinate of
camera position.
Default value: counted dynamically

cameraUpVector (accepts array) – Camera up vector.
Expected value: Array 3 numbers representing x, y and z up vector of
camera.
Default value: {0, 1, 0}

cameraTarget (accepts array) – Camera target. If not set it is counted auto-
matically.
Expected value: Array 3 numbers representing x, y and z coordinate of
camera target.
Default value: counted dynamically

J.2.4 Axiom provider
Provides a symbol property called Axiom which serves as an initial string of
symbols of an L-system.

Type name AxiomProvider (Common.AxiomProvider)

Base components SymbolProvider

Assignable to interfaces IComponent, IProcessComponent, ISymbolProvider

Settable symbol properties of Axiom provider
axiom – Initial string of symbols. The value is provided to the connected com-

ponent.
Symbols – Symbol string which is provided.

147

J.2.5 Constants dumper
Prints all defined constants from the global scope. To be able to use this com-
ponent you will need to process some L-system with it. It is possible to define
an empty L-system or you can use the Constants L-system from the standard
library. The process statement may look like this: process Constants with Con-
stantDumper;

Type name ConstantsDumper (Common.ConstantsDumper)

Assignable to interfaces IComponent, IProcessStarter

Settable properties of Constants dumper

DumpAllConstants (accepts value) – Default behavior is to print only con-
stants in main input. If this is set to true all constants will be printed.
Expected value: true or false
Default value: false

J.2.6 Hexagonal ASCII interpreter
Hexagonal ASCII interpreter interprets symbols as lines on hexagonal grid ren-
dering them as text (ASCII art).

Type name HexaAsciiInterpreter (Interpreters.HexaAsciiInterpreter)

Assignable to interfaces IComponent, IInterpreter, IProcessComponent

Settable properties of Hexagonal ASCII interpreter

scale (accepts value) – Scale of result ASCII art. Value representing number of
characters to draw per line.
Expected value: Positive number.
Default value: 1

horizontalScaleMultiplier (accepts value) – Horizontal scale multiplier is used
to multiply number of characters per horizontal line. Default value is 2
because ordinary characters are 2 times taller than wider.
Expected value: Positive number.
Default value: 2

Connectable properties of Hexagonal ASCII interpreter

Renderer (connectable type: IRenderer) – Render for rendering of ASCII art.
Connected renderer must implement ITextRenderer interface.

148

Interpretation methods of Hexagonal ASCII interpreter

Nothing – Symbol is ignored.
Parameters: 0

MoveForward – Moves forward (without drawing) by one tile in current direc-
tion.
Parameters: 0

DrawLine – Draws line (from characters) in current direction.
Parameters: 0

TurnLeft – Turns left by 60 degrees.
Parameters: 0

TurnRight – Turns right by 60 degrees.
Parameters: 0

TurnAround – Turns by 180 degrees.
Parameters: 0

StartBranch – Saves current state (on stack).
Parameters: 0

EndBranch – Loads previously saved state (returns to last saved position).
Parameters: 0

J.2.7 Inner L-system iterator
Specialized iterator for iterating inner L-systems. Axiom is directly in iterator as
property to optimize number of components. AxiomProvider property is ignored.

Type name InnerLsystemIterator (RewriterIterators.InnerLsystemIterator)

Base components MemoryBufferedIterator

Assignable to interfaces IComponent, IIterator, IProcessComponent, IPro-
cessStarter, ISymbolProvider

Gettable properties of Inner L-system iterator

currentIteration run-time only (returns value) – Number of current iteration.
Zero is axiom (no iteration was done), first iteration have number 1 and
last is equal to number of all iterations specified by Iterations property.

iterations, i run-time only (returns value) – Number of iterations to do with
current L-system.

Settable properties of Inner L-system iterator

iterations, i (accepts value) – Number of iterations to do with current L-system.
Expected value: Non-negative number representing number of iterations.
Default value: 0

149

interpretEveryIteration (accepts value) – If set to true iterator will send sym-
bols from all iterations to connected interpret. Otherwise only result of last
iteration is interpreted.
Expected value: true or false
Default value: false

interpretEveryIterationFrom (accepts value) – Sets interprets all iteration
from given number.
Expected value: true or false
Default value: false

interpretFollowingIterations (accepts array) – Array with numbers of itera-
tions which will be interpreted.
Expected value: Array of numbers
Default value: {} (empty array)

Settable symbol properties of Inner L-system iterator

axiom mandatory – Axiom is directly in iterator to optimize number of compo-
nents.

Connectable properties of Inner L-system iterator

AxiomProvider optional (connectable type: ISymbolProvider) – To allow not
connecting AxiomProvider component.

SymbolProvider optional (connectable type: ISymbolProvider) – Iterator it-
erates symbols by reading all symbols from SymbolProvider every iter-
ation. Rewriter should be connected as SymbolProvider and rewriters’s
SymbolProvider should be this Iterator. This setup creates loop and itera-
tor rewrites string of symbols every iteration. When number of iterations
is set to 0 (of left default as 0) only axiom is used and this that case this
property can be left unconnected.

OutputProcessor (connectable type: ISymbolProcessor) – Result string of sym-
bols is sent to connected output processor. It should be InterpretrCaller
who calls Interpreter and interprets symbols.

RandomGeneratorProvider optional (connectable type: RandomGenerator-
Provider) – Connected RandomGeneratorProvider’s random generator is
rested after each iteration if iterator is configured to do that (ResetRando-
mAfterEachIteration property is set to true).

J.2.8 Inner L-system processor
This is special component for interpreting an L-system symbol as another L-
system. The symbol is processed by newly created component system but inter-
pretation calls are processed with all the components in the original system.

Type name LsystemInLsystemProcessor (Common.LsystemInLsystemProcessor)

Assignable to interfaces ILsystemInLsystemProcessor, IComponent

150

J.2.9 Interpreter caller
Process symbols by calling interpretation methods on connected interpreter. For
conversion are used defined interpretation rules in current L-system.

Type name InterpreterCaller (Interpreters.InterpreterCaller)

Assignable to interfaces IComponent, IInterpreterCaller, IProcessCompo-
nent, ISymbolProcessor

Settable properties of Interpreter caller

debugInterpretation (accepts value) – True if print debug information about
interpretation converting.
Expected value: true or false
Default value: false

Connectable properties of Interpreter caller

LsystemInLsystemProcessor optional (connectable type: ILsystemInLsystem-
Processor) – Specialized component to allow interpret L-system symbol as
another L-system.

J.2.10 Memory-buffered iterator
Iterates L-system from connected symbol provider with connected rewriter. Buffers
symbols from rewriter in the memory.

Type name MemoryBufferedIterator (RewriterIterators.MemoryBufferedIterator)

Derived components InnerLsystemIterator

Assignable to interfaces IComponent, IIterator, IProcessComponent, IPro-
cessStarter, ISymbolProvider

Gettable properties of Memory-buffered iterator

currentIteration run-time only (returns value) – Number of current iteration.
Zero is axiom (no iteration was done), first iteration have number 1 and
last is equal to number of all iterations specified by Iterations property.

iterations, i run-time only (returns value) – Number of iterations to do with
current L-system.

151

Settable properties of Memory-buffered iterator

iterations, i (accepts value) – Number of iterations to do with current L-system.
Expected value: Non-negative number representing number of iterations.
Default value: 0

interpretEveryIteration (accepts value) – If set to true iterator will send sym-
bols from all iterations to connected interpret. Otherwise only result of last
iteration is interpreted.
Expected value: true or false
Default value: false

interpretEveryIterationFrom (accepts value) – Sets interprets all iteration
from given number.
Expected value: true or false
Default value: false

interpretFollowingIterations (accepts array) – Array with numbers of itera-
tions which will be interpreted.
Expected value: Array of numbers
Default value: {} (empty array)

Connectable properties of Memory-buffered iterator

SymbolProvider optional (connectable type: ISymbolProvider) – Iterator it-
erates symbols by reading all symbols from SymbolProvider every iter-
ation. Rewriter should be connected as SymbolProvider and rewriters’s
SymbolProvider should be this Iterator. This setup creates loop and itera-
tor rewrites string of symbols every iteration. When number of iterations
is set to 0 (of left default as 0) only axiom is used and this that case this
property can be left unconnected.

AxiomProvider (connectable type: ISymbolProvider) – Axiom provider com-
ponent provides initial string of symbols. All symbols are read at begin of
processing.

OutputProcessor (connectable type: ISymbolProcessor) – Result string of sym-
bols is sent to connected output processor. It should be InterpretrCaller
who calls Interpreter and interprets symbols.

RandomGeneratorProvider optional (connectable type: RandomGenerator-
Provider) – Connected RandomGeneratorProvider’s random generator is
rested after each iteration if iterator is configured to do that (ResetRando-
mAfterEachIteration property is set to true).

J.2.11 Random generator provider
This component offers both, random and pseudo-random generators. It provides
a callable function called random which can be called even in the L-system defi-
nition (not only at run-time). The pseudo-random number generator is used by
default. If no random seed is set it will be generated randomly and a message
with its value will be sent to the user to be possible to reproduce generated result.
Truly-random generation should be used only by experienced users because other

152

components will not be able to measure a generated model and results may be
strange.

Type name RandomGeneratorProvider (Common.RandomGeneratorProvider)

Assignable to interfaces IComponent

Gettable properties of Random generator provider

trueRandom run-time only (returns value) – If set to true as random gen-
erator will be used true-random (cryptographic random) generator. For
this random generator can not be set any seed and numbers are always
unpredictably random. If set to false as random generator will be used
pseudo-random generator.

randomSeed (returns value) – If set pseudo-random generator will generate
always same sequence of random numbers. Do not work if TrueRandom
property is set.

Settable properties of Random generator provider

trueRandom (accepts value) – If set to true as random generator will be used
true-random (cryptographic random) generator. For this random generator
can not be set any seed and numbers are always unpredictably random. If
set to false as random generator will be used pseudo-random generator.
Expected value: true or false
Default value: false

randomSeed (accepts value) – If set pseudo-random generator will generate
always same sequence of random numbers. Do not work if TrueRandom
property is set.
Expected value: Non-negative integer.
Default value: random

Callable functions of Random generator provider

random (returns value) – Returns random value from 0.0 (inclusive) to 1.0 (ex-
clusive).
Parameters: 0

random (returns value) – Returns random value within specified range.
Parameters: 2
1. The inclusive lower bound of the random number returned.
2. The exclusive upper bound of the random number returned.

J.2.12 Symbol fileter
Filters symbol stream.

Type name SymbolFilter (ExamplePlugin.Components.SymbolFilter)

153

Assignable to interfaces IComponent, IProcessComponent, ISymbolProces-
sor

Settable symbol properties of Symbol fileter

ignore – List of ignored symbols.

Connectable properties of Symbol fileter

Output (connectable type: ISymbolProcessor) – Components to which filtered
symbols are sent.

J.2.13 Symbol provider
Standard implementation of ISymbolProvider interface. It provides all symbols
set to the Symbols property regardless of the state of processing.

Type name SymbolProvider (Common.SymbolProvider)

Derived components AxiomProvider

Assignable to interfaces IComponent, IProcessComponent, ISymbolProvider

Settable symbol properties of Symbol provider

Symbols – Symbol string which is provided.

J.2.14 Symbol rewriter
Full featured symbol rewriter which rewrites symbols based on defined rewrite
rules in the L-system. It is capable to rewrite symbol based all criteria of Malsys’
rewrite rules. Rewriting is initiated by symbol request (by enumerator). Then
rewriter takes as many symbols from connected symbol provider as is needed
for rewriting the symbol. If contexts (or branches) are long it may load many
symbols before returning single one.

Type name SymbolRewriter (Rewriters.SymbolRewriter)

Assignable to interfaces IComponent, IProcessComponent, IRewriter, ISym-
bolProvider

Settable symbol properties of Symbol rewriter

contextIgnore – List of symbols which are ignored in context checking.
startBranchSymbols – List of symbols which are indicating start of branch.

This symbols should be identical to symbols which are interpreted as start
branch.

endBranchSymbols – List of symbols which are indicating end of branch. This
symbols should be identical to symbols which are interpreted as end branch.

154

Connectable properties of Symbol rewriter

SymbolProvider (connectable type: ISymbolProvider)

J.2.15 Symbols saver
Prints all processed symbols (with their parameters) as the text. Symbols are
delimited with a space.

Type name SymbolsSaver (Common.SymbolsSaver)

Assignable to interfaces IComponent, IProcessComponent, ISymbolProces-
sor

J.2.16 Text renderer
Provides commands for rendering plain text ASCII art.

Type name TextRenderer (Renderers.TextRenderer)

Assignable to interfaces IComponent, IProcessComponent, IRenderer, ITex-
tRenderer

J.2.17 Turtle interpreter
Turtle interpreter interprets symbols as basic 2D or 3D graphics primitives. In-
terpreting is always in 3D but if it is connected 2D renderer (component with
interface IRenderer2D) the Z coordinate is omitted.

Type name TurtleInterpreter (Interpreters.TurtleInterpreter)

Assignable to interfaces IComponent, IInterpreter, IInterpreter2D, IInter-
preter3D, IProcessComponent

Gettable properties of Turtle interpreter

origin (returns array) – Origin (start position) of ”turtle”.
forwardVector (returns array) – Forward vector of ”turtle”.
upVector (returns array) – Up vector of ”turtle”.

Settable properties of Turtle interpreter

origin (accepts array) – Origin (start position) of ”turtle”.
Expected value: Array of 2 or 3 numbers representing x, y and optionally
z coordinate.
Default value: {0, 0, 0}

155

forwardVector (accepts array) – Forward vector of ”turtle”.
Expected value: Array of 3 numbers representing x, y and z coordinate.
Default value: {1, 0, 0}

upVector (accepts array) – Up vector of ”turtle”.
Expected value: Array of 3 constants representing x, y and z coordinate.
Default value: {0, 1, 0}

rotationQuaternion (accepts array)
initialAngle (accepts value) – Initial angle (in degrees) in 2D mode (angle in

plane given by forward and up vectors).
Expected value: Number representing angle in degrees.
Default value: 0

initialLineWidth (accepts value) – Initial width of drawn line.
Expected value: Number representing width. Unit of value depends on used
renderer.
Default value: 2

initialColor (accepts value or array) – Initial color of drawn line.
Expected value: Number representing ARGB color (in range from 0 to 23̂2
- 1) or array of numbers (in range from 0.0 to 1.0) with length of 3 (RGB)
or 4 (ARGB).
Default value: 0 (black)

continuousColoring (accepts value or array) – Continuous coloring gradient.
If enabled all colors will be ignored and given gradient (or default gradient
of rainbow) will be used to continuously color all objects.
Expected value: Boolean false disables continuous coloring, true uses default
rainbow gradient to continuous coloring. Array representing color gradient
can be also set (see documentation or examples for syntax).
Default value: false

reversePolygonOrder (accepts value) – Reverses order of drawn polygons from
first-opened last-drawn to first-opened first-drawn. This in only valid when
2D renderer is attached (in 3D is order insignificant).
Expected value: true or false
Default value: false

tropismVector (accepts array) – Tropism vector affects drawn or moved lines
to derive to tropism vector.
Expected value: Array of 3 constants representing x, y and z coordinate.
Default value: {0, 1, 0}

tropismCoefficient (accepts value) – Tropism coefficient affects speed of deriva-
tion to tropism vector.
Expected value: Number.
Default value: 0

Connectable properties of Turtle interpreter

Renderer (connectable type: IRenderer) – All render events will be called on
connected renderer. Both IRenderer2D or IRenderer3D can be connected.

156

Interpretation methods of Turtle interpreter

Nothing – Symbol is ignored.
Parameters: 0

MoveForward – Moves forward in current direction (without drawing) by dis-
tance equal to value of the first parameter.
Parameters: 1 (1 mandatory)
1. Moved distance. (mandatory)

DrawForward – Draws line in current direction with length equal to value of
first parameter.
Parameters: 4 (1 mandatory)
1. Length of line. (mandatory)
2. Width of line.
3. Color of line. Can be ARGB number in range from 0 to 23̂2 - 1 or

array with 3 (RGB) or 4 (ARGB) items in range from 0.0 to 1.0.
4. Quality of rendered line in 3D.

DrawCircle – Draws circle with center in current position and radius equal to
value of the first parameter.
Parameters: 2 (1 mandatory)
1. Radius of circle. (mandatory)
2. Color of circle.

DrawSphere – Draws sphere with center in current position and radius equal
to value of the first parameter.
Parameters: 3 (1 mandatory)
1. Radius of sphere. (mandatory)
2. Color of sphere.
3. Quality of sphere (number of triangles).

TurnLeft – Turns left by value of the first parameter (in degrees) (in X-Y plane,
around axis Z).
Parameters: 1 (0 mandatory)
1. Angle in degrees.

Yaw – Turns left around up vector axis (default Y axis [0, 1, 0]) by value given
in the first parameter (in degrees).
Parameters: 1 (0 mandatory)
1. Angle in degrees.

Pitch – Turns up around right-hand vector axis (default Z axis [0, 0, 1]) by value
given in the first parameter (in degrees).
Parameters: 1 (0 mandatory)
1. Angle in degrees.

Roll – Rolls clock-wise around forward vector axis (default X axis [1, 0, 0]) by
value given in the first parameter (in degrees).
Parameters: 1 (0 mandatory)

157

1. Angle in degrees.
StartBranch – Saves current state (on stack).

Parameters: 0
EndBranch – Loads previously saved state (returns to last saved position).

Parameters: 0
StartPolygon – Starts to record polygon vertices (do not saves current position

as first vertex). If another polygon is opened, its state is saved and will be
restored after closing of current polygon.
Parameters: 3 (0 mandatory)
1. Color of polygon.
2. Stroke width.
3. Stroke color.

RecordPolygonVertex – Records current position to opened polygon.
Parameters: 0

EndPolygon – Ends current polygon (do not saves current position as last ver-
tex).
Parameters: 0

158

K. Process configurations
In order to save space in the printed version of the thesis this appendix contains
reference for the only process configuration called SvgRenderer. The reference also
contains consolidated list of all members of all components used in the process
configuration (default components are considered for containers).

K.1 Legend
Explanation of tags which describes special properties of some members.

abstract Components marked as abstract can not be instantiated. They can be
used in the same way as interfaces (only as container type).

run-time only Gettable properties (or callable functions) marked as run-time
only can be get (called) only while L-system is processed (in rewrite rules or
interpretation methods). Especially they can not be get (called) in L-system
let or set statements.

mandatory Value of settable properties (and settable symbol properties) marked
as mandatory must be set in L-system definition. Parameters of interpre-
tation method marked as mandatory must be supplied to interpretation
method.

optional Connectable properties marked as optional may not be connected by
process configuration (by default they must be connected).

allowed multiple More components can be connected to connectable proper-
ties marked as allowed multiple (by default only one component can be
connected).

virtual Connections marked as virtual are not checked by compiler if they con-
nects defined components.

K.1.1 SvgRenderer
Components

AxiomProvider AxiomProvider
RandomGeneratorProvider RandomGeneratorProvider
LsystemInLsystemProcessor LsystemInLsystemProcessor

Containers

Rewriter IRewriter (default SymbolRewriter)
Iterator IIterator (default MemoryBufferedIterator)
InterpreterCaller IInterpreterCaller (default InterpreterCaller)
Interpreter IInterpreter (default TurtleInterpreter)
Renderer IRenderer (default SvgRenderer2D)

159

Connections

• RandomGeneratorProvider to Iterator.RandomGeneratorProvider
• AxiomProvider to Iterator.AxiomProvider
• Iterator to Rewriter.SymbolProvider
• Rewriter to Iterator.SymbolProvider
• InterpreterCaller to Iterator.OutputProcessor
• LsystemInLsystemProcessor to InterpreterCaller.LsystemInLsystemProcessor
• Renderer to Interpreter.Renderer

Gettable properties of SvgRenderer

trueRandom of RandomGeneratorProvider run-time only (returns value) – If
set to true as random generator will be used true-random (cryptographic
random) generator. For this random generator can not be set any seed
and numbers are always unpredictably random. If set to false as random
generator will be used pseudo-random generator.

randomSeed of RandomGeneratorProvider (returns value) – If set pseudo-random
generator will generate always same sequence of random numbers. Do not
work if TrueRandom property is set.

currentIteration of MemoryBufferedIterator run-time only (returns value) –
Number of current iteration. Zero is axiom (no iteration was done), first
iteration have number 1 and last is equal to number of all iterations specified
by Iterations property.

iterations, i of MemoryBufferedIterator run-time only (returns value) – Num-
ber of iterations to do with current L-system.

origin of TurtleInterpreter (returns array) – Origin (start position) of ”turtle”.
forwardVector of TurtleInterpreter (returns array) – Forward vector of ”turtle”.
upVector of TurtleInterpreter (returns array) – Up vector of ”turtle”.

Settable properties of SvgRenderer

trueRandom of RandomGeneratorProvider (accepts value) – If set to true as
random generator will be used true-random (cryptographic random) gener-
ator. For this random generator can not be set any seed and numbers are
always unpredictably random. If set to false as random generator will be
used pseudo-random generator.
Expected value: true or false
Default value: false

randomSeed of RandomGeneratorProvider (accepts value) – If set pseudo-random
generator will generate always same sequence of random numbers. Do not
work if TrueRandom property is set.
Expected value: Non-negative integer.
Default value: random

160

iterations, i of MemoryBufferedIterator (accepts value) – Number of iterations
to do with current L-system.
Expected value: Non-negative number representing number of iterations.
Default value: 0

interpretEveryIteration of MemoryBufferedIterator (accepts value) – If set to
true iterator will send symbols from all iterations to connected interpret.
Otherwise only result of last iteration is interpreted.
Expected value: true or false
Default value: false

interpretEveryIterationFrom of MemoryBufferedIterator (accepts value) –
Sets interprets all iteration from given number.
Expected value: true or false
Default value: false

interpretFollowingIterations of MemoryBufferedIterator (accepts array) – Ar-
ray with numbers of iterations which will be interpreted.
Expected value: Array of numbers
Default value: {} (empty array)

debugInterpretation of InterpreterCaller (accepts value) – True if print debug
information about interpretation converting.
Expected value: true or false
Default value: false

origin of TurtleInterpreter (accepts array) – Origin (start position) of ”turtle”.
Expected value: Array of 2 or 3 numbers representing x, y and optionally
z coordinate.
Default value: {0, 0, 0}

forwardVector of TurtleInterpreter (accepts array) – Forward vector of ”turtle”.
Expected value: Array of 3 numbers representing x, y and z coordinate.
Default value: {1, 0, 0}

upVector of TurtleInterpreter (accepts array) – Up vector of ”turtle”.
Expected value: Array of 3 constants representing x, y and z coordinate.
Default value: {0, 1, 0}

rotationQuaternion of TurtleInterpreter (accepts array)
initialAngle of TurtleInterpreter (accepts value) – Initial angle (in degrees) in

2D mode (angle in plane given by forward and up vectors).
Expected value: Number representing angle in degrees.
Default value: 0

initialLineWidth of TurtleInterpreter (accepts value) – Initial width of drawn
line.
Expected value: Number representing width. Unit of value depends on used
renderer.
Default value: 2

initialColor of TurtleInterpreter (accepts value or array) – Initial color of drawn
line.
Expected value: Number representing ARGB color (in range from 0 to 23̂2
- 1) or array of numbers (in range from 0.0 to 1.0) with length of 3 (RGB)

161

or 4 (ARGB).
Default value: 0 (black)

continuousColoring of TurtleInterpreter (accepts value or array) – Continuous
coloring gradient. If enabled all colors will be ignored and given gradient (or
default gradient of rainbow) will be used to continuously color all objects.
Expected value: Boolean false disables continuous coloring, true uses default
rainbow gradient to continuous coloring. Array representing color gradient
can be also set (see documentation or examples for syntax).
Default value: false

reversePolygonOrder of TurtleInterpreter (accepts value) – Reverses order of
drawn polygons from first-opened last-drawn to first-opened first-drawn.
This in only valid when 2D renderer is attached (in 3D is order insignificant).
Expected value: true or false
Default value: false

tropismVector of TurtleInterpreter (accepts array) – Tropism vector affects
drawn or moved lines to derive to tropism vector.
Expected value: Array of 3 constants representing x, y and z coordinate.
Default value: {0, 1, 0}

tropismCoefficient of TurtleInterpreter (accepts value) – Tropism coefficient
affects speed of derivation to tropism vector.
Expected value: Number.
Default value: 0

margin of SvgRenderer2D (accepts value or array) – Margin of result image.
Expected value: One number (or array with one number) for all margins,
array of two numbers for vertical and horizontal margins or array of four
numbers as top, right, bottom and left margin respectively.
Default value: 2

canvasOriginSize of SvgRenderer2D (accepts array) – When set it overrides
measured dimensions of image and uses given values.
Expected value: Four numbers representing x, y, width and height of canvas.
Default value: none

compressSvg of SvgRenderer2D (accepts value) – If set to true result SBG
image is compressed by GZip. GZipped SVG images are standard and
all programs supporting SVG should be able to open it. GZipping SVG
significantly reduces its size.
Expected value: true or false
Default value: true

scale of SvgRenderer2D (accepts value) – Scale of result image.
Expected value: Positive number.
Default value: 1

lineCap of SvgRenderer2D (accepts value) – Cap of each rendered line.
Expected value: 0 for no caps, 1 for square caps, 2 for round caps
Default value: 2 (round caps)

Settable symbol properties of SvgRenderer

162

axiom of AxiomProvider – Initial string of symbols. The value is provided to
the connected component.

Symbols of AxiomProvider – Symbol string which is provided.
contextIgnore of SymbolRewriter – List of symbols which are ignored in con-

text checking.
startBranchSymbols of SymbolRewriter – List of symbols which are indicating

start of branch. This symbols should be identical to symbols which are
interpreted as start branch.

endBranchSymbols of SymbolRewriter – List of symbols which are indicating
end of branch. This symbols should be identical to symbols which are
interpreted as end branch.

Connectable properties of SvgRenderer

SymbolProvider of SymbolRewriter (connectable type: ISymbolProvider)
SymbolProvider of MemoryBufferedIterator optional (connectable type: ISym-

bolProvider) – Iterator iterates symbols by reading all symbols from Sym-
bolProvider every iteration. Rewriter should be connected as Symbol-
Provider and rewriters’s SymbolProvider should be this Iterator. This setup
creates loop and iterator rewrites string of symbols every iteration. When
number of iterations is set to 0 (of left default as 0) only axiom is used and
this that case this property can be left unconnected.

AxiomProvider of MemoryBufferedIterator (connectable type: ISymbolProvider)
– Axiom provider component provides initial string of symbols. All symbols
are read at begin of processing.

OutputProcessor of MemoryBufferedIterator (connectable type: ISymbolPro-
cessor) – Result string of symbols is sent to connected output processor. It
should be InterpretrCaller who calls Interpreter and interprets symbols.

RandomGeneratorProvider of MemoryBufferedIterator optional (connectable
type: RandomGeneratorProvider) – Connected RandomGeneratorProvider’s
random generator is rested after each iteration if iterator is configured to
do that (ResetRandomAfterEachIteration property is set to true).

LsystemInLsystemProcessor of InterpreterCaller optional (connectable type:
ILsystemInLsystemProcessor) – Specialized component to allow interpret
L-system symbol as another L-system.

Renderer of TurtleInterpreter (connectable type: IRenderer) – All render events
will be called on connected renderer. Both IRenderer2D or IRenderer3D can
be connected.

Callable functions of SvgRenderer

random of RandomGeneratorProvider (returns value) – Returns random value
from 0.0 (inclusive) to 1.0 (exclusive).
Parameters: 0

163

random of RandomGeneratorProvider (returns value) – Returns random value
within specified range.
Parameters: 2
1. The inclusive lower bound of the random number returned.
2. The exclusive upper bound of the random number returned.

Interpretation methods of SvgRenderer

Nothing of TurtleInterpreter – Symbol is ignored.
Parameters: 0

MoveForward of TurtleInterpreter – Moves forward in current direction (with-
out drawing) by distance equal to value of the first parameter.
Parameters: 1 (1 mandatory)
1. Moved distance. (mandatory)

DrawForward of TurtleInterpreter – Draws line in current direction with length
equal to value of first parameter.
Parameters: 4 (1 mandatory)
1. Length of line. (mandatory)
2. Width of line.
3. Color of line. Can be ARGB number in range from 0 to 23̂2 - 1 or

array with 3 (RGB) or 4 (ARGB) items in range from 0.0 to 1.0.
4. Quality of rendered line in 3D.

DrawCircle of TurtleInterpreter – Draws circle with center in current position
and radius equal to value of the first parameter.
Parameters: 2 (1 mandatory)
1. Radius of circle. (mandatory)
2. Color of circle.

DrawSphere of TurtleInterpreter – Draws sphere with center in current position
and radius equal to value of the first parameter.
Parameters: 3 (1 mandatory)
1. Radius of sphere. (mandatory)
2. Color of sphere.
3. Quality of sphere (number of triangles).

TurnLeft of TurtleInterpreter – Turns left by value of the first parameter (in
degrees) (in X-Y plane, around axis Z).
Parameters: 1 (0 mandatory)
1. Angle in degrees.

Yaw of TurtleInterpreter – Turns left around up vector axis (default Y axis [0,
1, 0]) by value given in the first parameter (in degrees).
Parameters: 1 (0 mandatory)
1. Angle in degrees.

164

Pitch of TurtleInterpreter – Turns up around right-hand vector axis (default Z
axis [0, 0, 1]) by value given in the first parameter (in degrees).
Parameters: 1 (0 mandatory)
1. Angle in degrees.

Roll of TurtleInterpreter – Rolls clock-wise around forward vector axis (default
X axis [1, 0, 0]) by value given in the first parameter (in degrees).
Parameters: 1 (0 mandatory)
1. Angle in degrees.

StartBranch of TurtleInterpreter – Saves current state (on stack).
Parameters: 0

EndBranch of TurtleInterpreter – Loads previously saved state (returns to last
saved position).
Parameters: 0

StartPolygon of TurtleInterpreter – Starts to record polygon vertices (do not
saves current position as first vertex). If another polygon is opened, its
state is saved and will be restored after closing of current polygon.
Parameters: 3 (0 mandatory)
1. Color of polygon.
2. Stroke width.
3. Stroke color.

RecordPolygonVertex of TurtleInterpreter – Records current position to opened
polygon.
Parameters: 0

EndPolygon of TurtleInterpreter – Ends current polygon (do not saves current
position as last vertex).
Parameters: 0

165

166

Coloring
As a reward that you have have read this far you can color some L-systems! You
can try to color the L-systems with the fewest number of colors so that no two
adjacent cells will have same color.

167

168

169

		Introduction

		L-systems

		Formal definition of L-system

		Rewriting principles of an L-system

		Interpretation of L-system symbols

		L-system types

		Deterministic L-systems

		Bracketed L-systems

		Stochastic L-systems

		Context-sensitive L-systems

		Parametric L-systems

		Related L-system generators

		Web based generators

		Desktop applications

		Design

		Choice of development environment

		L-system processing library

		Input form

		Input syntax

		Source code compilation

		Input processing

		Components

		Measuring pass

		Utilities

		Processing system

		Basic component system

		Component system extensions

		Interpretation of a symbol as another L-system

		Final component system

		Web user interface

		L-system processor

		Gallery of L-systems

		Help

		Administration

		Database

		Implementation

		Solution structure

		Input parsing

		Compilation and evaluation

		Components members

		Documentation of members

		Example

		Input processing

		Immutable data structures as scoped storage

		Implemented components

		Symbol rewriter

		Turtle graphics interpreter

		Triangulation of 3D polygons

		Web user interface

		Data annotations

		Easy configurability

		Inversion of control

		Removal of literal strings with the T4MVC

		Generated help pages

		Caching and compression

		Error logging

		Cascading style sheets

		JavaScript

		Results

		L-system processing library

		Unit tests

		Web user interface

		Visitors and traffic

		Some solution statistics

		Showcase of L-systems

		Conclusion

		List of Abbreviations

		List of Figures

		List of Tables

		List of Source codes

		Appendix Contents of attached CD

		Appendix About figures

		Appendix User documentation

		How to process L-system

		Creation of the Pythagoras tree

		Appendix Component implementation and usage

		Component implementation

		Static filtering

		Configurable filtering

		Logging of messages

		Usage in real process configuration

		Component documentation

		Appendix Usage of L-system processing library

		Appendix Publish on the server

		Creation of publish package

		Settings

		Compilation

		Configuration of the server

		Internet Information Services (IIS)

		Web platform installer

		F#

		Deploy of the application

		Creation of new Application pool

		Creation of new App Pool

		Copy files

		First run

		Server migration

		Appendix Third-party libraries and services

		F# PowerPack

		HTML5 boilerplate

		Three.js

		jQuery

		Modernizr

		Code Contracts

		Autofac IoC container

		MvcContrib

		Elmah

		LESS css

		.LESS

		Data Annotations Extensions

		Yahoo! UI Library

		ReCaptcha

		Google Analytics

		Appendix Input syntax reference

		Regular expressions

		Tokens

		Identifier

		Number

		Operator

		Input syntax

		Input

		Empty statement

		Constant definition

		Function definition

		L-system definition

		Process configuration definition

		Process statement

		Mathematical expression

		Common rules

		Appendix Standard library source code

		General Constants

		Component specific constants

		Svg renderer

		ThreeJs renderer

		Abstract L-systems

		Standard L-system 2D

		Standard L-system 3D

		Branches

		Polygons and branches

		Process configurations

		Symbol printer

		Svg renderer

		ThreeJs renderer

		Hexagonal ASCII renderer

		Inner L-system process configuration

		Constant dumper

		Appendix Components

		Legend

		Components

		2D SVG renderer

		3D renderer base

		3D Three.js renderer

		Axiom provider

		Constants dumper

		Hexagonal ASCII interpreter

		Inner L-system iterator

		Inner L-system processor

		Interpreter caller

		Memory-buffered iterator

		Random generator provider

		Symbol fileter

		Symbol provider

		Symbol rewriter

		Symbols saver

		Text renderer

		Turtle interpreter

		Appendix Process configurations

		Legend

		SvgRenderer

